Log in

Group 8–9 Metal-Based Luminescent Chemosensors for Protein Biomarker Detection

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The development of transition metal complex-based luminescent chemosensors has recently aroused increasing interest for protein biomarker labelling and detection, especially for the real-time diagnosis and treatment of disease. This is owing to their unique photophysical properties, particularly their long-lived and environmentally sensitive emission, which can be easily controlled via the structural modification of ligands. In this overview, we highlight recent examples of protein biomarker detection using group 8–9 metal-based luminescent chemosensors, including the frequently employed ruthenium(II) and iridium(III) complexes. Various mechanisms and sensing modes are described and compared, and the outlook and future directions of this field are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  Google Scholar 

  2. La Thangue NB, Kerr DJ. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol. 2011;8:587–96.

    Article  Google Scholar 

  3. Lee HJ, Wark AW, Corn RM. Microarray methods for protein biomarker detection. Analyst. 2008;133:975–83.

    Article  CAS  Google Scholar 

  4. Nimse SB, Sonawane MD, Song K-S, et al. Biomarker detection technologies and future directions. Analyst. 2016;141:740–55.

    Article  CAS  Google Scholar 

  5. Nicoletti I, Migliorati G, Pagliacci M, et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–9.

    Article  CAS  Google Scholar 

  6. Erlich HA. Polymerase chain reaction. Clin Immunol. 1989;9:437–47.

    Article  CAS  Google Scholar 

  7. Bignami A, Eng L, Dahl D, et al. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972;43:429–35.

    Article  CAS  Google Scholar 

  8. Johnson GD, Araujo GMDCN. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43:349–50.

    Article  CAS  Google Scholar 

  9. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  Google Scholar 

  10. McKelvey-Martin V, Green M, Schmezer P, et al. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res Fundam Mol Mech Mutagen. 1993;288:47–63.

    Article  CAS  Google Scholar 

  11. O’Kennedy R, Byrne M, O’Fagain C, et al. Experimental section: a review of enzyme-immunoassay and a description of a competitive enzyme-linked immunosorbent assay for the detection of immunoglobulin concentrations. Biochem Edu. 1990;18:136–40.

    Article  Google Scholar 

  12. Wilson PC, Andrews SF. Tools to therapeutically harness the human antibody response. Nat Rev Immunol. 2012;12:709–19.

    Article  CAS  Google Scholar 

  13. Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem. 2002;48:1296–304.

    CAS  Google Scholar 

  14. Tsien RY. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed Engl. 2009;48:5612–26.

    Article  CAS  Google Scholar 

  15. Wang M, Mao Z, Kang T-S, et al. Conjugating a groove-binding motif to an Ir(III) complex for the enhancement of G-quadruplex probe behavior. Chem Sci. 2016;7:2516–23.

    Article  CAS  Google Scholar 

  16. Tsuyama T, Kishikawa J-I, Han Y-W, et al. In vivo fluorescent adenosine 5′-triphosphate (ATP) imaging of drosophila melanogaster and caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal Chem. 2013;85:7889–96.

    Article  CAS  Google Scholar 

  17. Fang S, Chen L, Zhao M. Unimolecular chemically modified DNA fluorescent probe for one-step quantitative measurement of the activity of human apurinic/apyrimidinic endonuclease 1 in biological samples. Anal Chem. 2015;87:11952–6.

    Article  CAS  Google Scholar 

  18. Du Y-C, Jiang H-X, Huo Y-F, et al. Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase. Biosens Bioelectron. 2016;77:971–7.

    Article  CAS  Google Scholar 

  19. Ali H, Bhunia SK, Dalal C, et al. Red fluorescent carbon nanoparticle-based cell imaging probe. ACS Appl Mater Interfaces. 2016;8:9305–13.

    Article  CAS  Google Scholar 

  20. Zhai J, Liu Y, Huang S, et al. A specific DNA-nanoprobe for tracking the activities of human apurinic/apyrimidinic endonuclease 1 in living cells. Nucleic Acids Res. 2017;45:e45.

    Article  Google Scholar 

  21. Gan J, Zhu J, Yan G, et al. Periodic mesoporous organosilica as a multifunctional nanodevice for large-scale characterization of membrane proteins. Anal Chem. 2012;84:5809–15.

    Article  CAS  Google Scholar 

  22. Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.

    Article  CAS  Google Scholar 

  23. Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem. 2007;58:409–31.

    Article  CAS  Google Scholar 

  24. Zhang Q, Song C, Zhao T, et al. Photoluminescent sensing for acidic amino acids based on the disruption of graphene quantum dots/europium ions aggregates. Biosens Bioelectron. 2015;65:204–10.

    Article  CAS  Google Scholar 

  25. Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2009;110:2620–40.

    Article  Google Scholar 

  26. Jiang H-X, Zhao M-Y, Niu C-D, et al. Real-time monitoring of rolling circle amplification using aggregation-induced emission: applications in biological detection. Chem Commun. 2015;51:16518–21.

    Article  CAS  Google Scholar 

  27. Chakrabortty S, Agrawalla BK, Stumper A, et al. Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. J Am Chem Soc. 2017;139:2512–9.

    Article  CAS  Google Scholar 

  28. Happ B, Winter A, Hager MD, et al. Photogenerated avenues in macromolecules containing Re(I), Ru (II), Os(II), and Ir(III) metal complexes of pyridine-based ligands. Chem Soc Rev. 2012;41:2222–55.

    Article  CAS  Google Scholar 

  29. Kalinowski J, Fattori V, Cocchi M, et al. Light-emitting devices based on organometallic platinum complexes as emitters. Coord Chem Rev. 2011;255:2401–25.

    Article  CAS  Google Scholar 

  30. Shi C, Sun H, Tang X, et al. Variable photophysical properties of phosphorescent iridium(III) complexes triggered by closo- and nido-carborane substitution. Angew Chem Int Ed Engl. 2013;52:13434–8.

    Article  CAS  Google Scholar 

  31. Liu SJ, Zhao Q, Mi BX, et al. Advances in polymer science. In: Scherf U, Neher D, editors. Polyfluorenes. Berlin: Springer; 2008. p. 125–44.

    Chapter  Google Scholar 

  32. Zhou Y, Jia J, Li W, et al. Luminescent biscarbene iridium(III) complexes as living cell imaging reagents. Chem Commun. 2013;49:3230–2.

    Article  CAS  Google Scholar 

  33. Yersin H, Rausch AF, Czerwieniec R, et al. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord Chem Rev. 2011;255:2622–52.

    Article  CAS  Google Scholar 

  34. Mabbs FE, Machin DJ. Magnetism and transition metal complexes. London: Chapman and Hall; 1973.

    Google Scholar 

  35. Ma D-L, Lin S, Wang W, et al. Luminescent chemosensors by using cyclometalated iridium(III) complexes and their applications. Chem Sci. 2017;8:878–89.

    Article  CAS  Google Scholar 

  36. Coppo P, Plummer EA, De Cola L. Tuning iridium(III) phenylpyridine complexes in the “almost blue” region. Chem Comm. 2004;15:1774–5.

    Article  Google Scholar 

  37. Wong W-Y, Ho C-L. Heavy metal organometallic electrophosphors derived from multi-component chromophores. Coord Chem Rev. 2009;253:1709–58.

    Article  CAS  Google Scholar 

  38. Zhou Y, Li W, Liu Y, et al. Substituent effect of ancillary ligands on the luminescence of bis [4,6-(di-fluorophenyl)-pyridinato-N, C2′] iridium(III) complexes. Dalton Trans. 2012;41:9373–81.

    Article  CAS  Google Scholar 

  39. Guerchais V, Fillaut J-L. Sensory luminescent iridium(III) and platinum(II) complexes for cation recognition. Coord Chem Rev. 2011;255:2448–57.

    Article  CAS  Google Scholar 

  40. Ma D-L, Chan DSH, Leung CH. Group 9 organometallic compounds for therapeutic and bioanalytical applications. Acc Chem Res. 2014;47:3614–31.

    Article  CAS  Google Scholar 

  41. Lo KK-W, Tsang KH-K, Sze K-S, et al. Non-covalent binding of luminescent transition metal polypyridine complexes to avidin indole-binding proteins and estrogen receptors. Coord Chem Rev. 2007;251:2292–310.

    Article  CAS  Google Scholar 

  42. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–41.

    Article  CAS  Google Scholar 

  43. Kim HN, Guo Z, Zhu W, et al. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev. 2011;40:79–93.

    Article  CAS  Google Scholar 

  44. Liu C, Yang C, Lu L, et al. Luminescent iridium(III) complexes as COX-2-specific imaging agents in cancer cells. Chem Commun. 2017;53:2822–5.

    Article  CAS  Google Scholar 

  45. Wang W, Yang C, Lin S, et al. First synthesis of an oridonin-conjugated iridium(III) complex for the intracellular tracking of NF-kB in living cells. Chem Eur J. 2017;23:4929–35.

    Article  CAS  Google Scholar 

  46. Rusling JF, Kumar CV, Gutkind JS, et al. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 2010;135:2496–511.

    Article  CAS  Google Scholar 

  47. Qiao L, Roussel C, Wan J, et al. MALDI in-source photooxidation reactions for online peptide tagging. Angew Chem Int Ed Engl. 2008;47:2646–8.

    Article  CAS  Google Scholar 

  48. Man BYW, Chan HM, Leung CH, et al. Group 9 metal-based inhibitors of β-amyloid (1–40) fibrillation as potential therapeutic agents for Alzheimer’s disease. Chem Sci. 2011;2:917–21.

    Article  CAS  Google Scholar 

  49. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24:971.

    Article  CAS  Google Scholar 

  50. Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods. 2013;10:28–34.

    Article  CAS  Google Scholar 

  51. Haugland RP. Handbook of fluorescent probes and research products. Eugene: Molecular Probes; 2002.

    Google Scholar 

  52. Ma D-L, Wang M, Liu C, et al. Metal complexes for the detection of disease-related protein biomarkers. Coord Chem Rev. 2016;324:90–105.

    Article  CAS  Google Scholar 

  53. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59.

    Article  CAS  Google Scholar 

  54. Sun A, Nguyen XV, Bing G. Comparative analysis of an improved thioflavin-s stain, Gallyas silver stain, and immunohistochemistry for neurofibrillary tangle demonstration on the same sections. J Histochem Cytochem. 2002;50:463–72.

    Article  CAS  Google Scholar 

  55. Gao X, Wang L, Huang H-L, et al. Molecular “light switch” [Ru(phen)2d ppzidzo]2 + monitoring the aggregation of tau. Analyst. 2015;140:7513–7.

    Article  CAS  Google Scholar 

  56. Nilsson S, Gustafsson J-Å. Biological role of estrogen and estrogen receptors. Crit Rev Biochem Mol Biol. 2002;37:1–28.

    Article  CAS  Google Scholar 

  57. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  CAS  Google Scholar 

  58. Lo KKW, Zhang KY, Chung CK, et al. Synthesis, photophysical and electrochemical properties, and protein-binding studies of luminescent cyclometalated iridium(III) bipyridine estradiol conjugates. Chem Eur J. 2007;13:7110–20.

    Article  CAS  Google Scholar 

  59. Lawrence DS. Chemical biology of signal transduction. Acc Chem Res. 2003;36:353.

    Article  CAS  Google Scholar 

  60. Chauhan A, Chauhan VP, Murakami N, et al. Amyloid β-protein stimulates casein kinase I and casein kinase II activities. Brain Res. 1993;629:47–52.

    Article  CAS  Google Scholar 

  61. Kang JH, Kim HJ, Kwon T-H, et al. Phosphorescent sensor for phosphorylated peptides based on an iridium complex. J Org Chem. 2014;79:6000–5.

    Article  CAS  Google Scholar 

  62. Peters JRT. All about albumin: biochemistry, genetics, and medical applications. Cambridge: Academic press; 1995.

    Google Scholar 

  63. Chiu N-T, Lee B-F, Hwang S-J, et al. Protein-losing enteropathy: diagnosis with 99mTc-labeled human serum albumin scintigraphy. Radiology. 2001;219:86–90.

    Article  CAS  Google Scholar 

  64. Lu L, He H-Z, Zhong H-J, et al. Luminescent detection of human serum albumin in aqueous solution using a cyclometallated iridium(III) complex. Sensor Actuat B-Chem. 2014;201:177–84.

    Article  CAS  Google Scholar 

  65. Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384:644.

    Article  CAS  Google Scholar 

  66. Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev. 2015;44:2963–97.

    Article  CAS  Google Scholar 

  67. Blank M, Shoenfeld Y. Histidine-rich glycoprotein modulation of immune/autoimmune, vascular, and coagulation systems. Clin Rev Allergy Immunol. 2008;34:307–12.

    Article  CAS  Google Scholar 

  68. Ma DL, Wong WL, Chung WH, et al. A highly selective luminescent switch-on probe for histidine/histidine-rich proteins and its application in protein staining. Angew Chem Int Ed. 2008;120:3795–9.

    Article  Google Scholar 

  69. Neuhoff V, Stamm R, Eibl H. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis. 1985;6:427–48.

    Article  CAS  Google Scholar 

  70. Davis KM, Bitting AL, Markwalter CF, et al. Iridium(III) luminescent probe for detection of the malarial protein biomarker histidine rich protein-II. J Vis Exp. 2015;101:52856.

    Google Scholar 

  71. Leung C-H, Grill SP, Lam W, et al. Novel mechanism of inhibition of nuclear factor-κB DNA-binding activity by diterpenoids isolated from Isodon rubescens. Mol Pharmacol. 2005;68:286–97.

    CAS  Google Scholar 

  72. Ma D-L, He H-Z, Leung K-H, et al. Label-free luminescent oligonucleotide-based probes. Chem Soc Rev. 2013;42:3427–40.

    Article  CAS  Google Scholar 

  73. Ma D-L, Lin S, Wang W, et al. Luminescent chemosensors by using cyclometalated iridium(III) complexes and their applications. Chemical Science. 2017;8:878–89.

    Article  CAS  Google Scholar 

  74. Zhao Q, Huang C, Li F. Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev. 2011;40:2508–24.

    Article  CAS  Google Scholar 

  75. Ma DL, Chan DSH, Leung CH. Drug repositioning by structure-based virtual screening. Chem Soc Rev. 2013;42:2130–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Hong Kong Baptist University (FRG2/16-17/007), the Health and Medical Research Fund (HMRF/14130522, 14150561), the Research Grants Council (HKBU/12301115), the National Natural Science Foundation of China (21575121, 21775131 and 21628502), the Guangdong Province Natural Science Foundation (2015A030313816), the Hong Kong Baptist University Century Club Sponsorship Scheme 2017, the Interdisciplinary Research Matching Scheme (RC-IRMS/15-16/03), Innovation and Technology Fund (ITS/260/16FX), Collaborative Research Fund (C5026-16G), Matching Proof of Concept Fund (MPCF-001-2017/18), the Science and Technology Development Fund, Macao SAR (098/2014/A2), the University of Macau (MYRG2015-00137-ICMS-QRCM, MYRG2016-00151-ICMS-QRCM and MRG044/LCH/2015/ICMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dik‐Lung Ma or Chung‐Hang Leung.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Wu, C., Li, G. et al. Group 8–9 Metal-Based Luminescent Chemosensors for Protein Biomarker Detection. J. Anal. Test. 2, 77–89 (2018). https://doi.org/10.1007/s41664-017-0045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0045-1

Keywords

Navigation