Log in

Seismogenic nodes defined with pattern recognition in the French Massif Central

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The goal of this work is to identify seismogenic nodes capable of generating I0 ≥ VI earthquakes in the French Massif Central, an intraplate region of low-to-moderate seismicity in the Mediterranean. For this purpose, we apply a phenomenological approach based on the pattern recognition. Recognition objects—morphostructural nodes—have been delineated with the morphostructural zoning method enabling to outline the hierarchical block-structure of the region, the network of morphostructural lineaments bounding blocks, and the loci of the nodes that are formed at the intersections of the lineaments. The epicenters of I0 ≥ VI earthquakes nucleate at some of the delineated nodes. The CORA-3 recognition algorithm pinpointed the other capable nodes, where the target earthquakes have not yet been recorded. The recognized seismogenic nodes are situated mainly in the eastern part of the Massif and correlate with high ranks lineaments dividing the larger blocks of the Massif Central. An assemblage of geomorphic features typical of seismogenic nodes was also defined. The work provides information on the potential earthquake sources which is very important for knowledgeable long-term seismic hazard assessment.

Resumen

El objetivo de este trabajo es la identificación de nodos sismogenéticos capaces de generar terremotos de Intensidad I0 > VI en el Macizo Central Francés, una región intraplaca de sismicidad moderada a baja, situada en el ámbito mediterráneo. Con este propósito aplicamos una aproximación fenomenológica basada en el reconocimiento de patrones. Los objetos a reconocer –nodos morfo-estructurales– han sido delineados con el método de zonificación estructural que ha permitido delinear la estructura jerárquica de bloques de la región, la red de lineamientos morfo-estructurales que limitan esos bloques y la localización de los nodos formados por la intersección de los lineamientos. Los epicentros de los terremotos de I0 > VI se nuclean en algunos de los nodos delineados. El algoritmo de reconocimiento CORA-3 situó los otros nodos capaces, en los que los terremotos buscados no se han registrado aun. Los nodos sismogénicos reconocidos se sitúan principalmente en el sector oriental del Macizo y se correlacionan con lineamientos de alto rango. Este trabajo aporta información acerca de potenciales fuentes de terremotos que es muy importante para las estimaciones de peligrosidad sísmica a largo plazo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexeevskaya, M. A., Gabrielov, A. M., Gvishiani, A. D., Gelfand, I. M., & Rantsamn, E. Ya. (1977). Formal morphostructural zoning of mountain territories. Journal of Geophysics, 43, 227–233.

    Google Scholar 

  • Audin, L., Avouac, J.-P., Flouzat, M., & Plantet, J.-L. (2002). Fluid-driven seismicity in a stable tectonic context: The remiremont fault zone, vosges. Geophysical Research Letters, 29, 13. https://doi.org/10.1029/2001gl012988.

    Article  Google Scholar 

  • Baize, S., Cushing, M., Lemeille, F., Granier, T., Grellet, B., Carbon, D., et al. (2002). Inventaire des indices de rupture affectant le Quaternaire en relation avec les grandes structures connues en France métropolitaine et dans les régions limitrophes. Mémoire de la société géologique de France, 175, 1–142.

    Google Scholar 

  • Baize, S., Cushing, E. M., Lemeille, F., & Jomard, H. (2013). Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bulletin de la Societe Geologique de France, 184, 225–259.

    Article  Google Scholar 

  • Benedetti, L. C., Tapponnier, P., Gaudemer, Y., Manighetti, I., & Van der Woerd, J. (2003). Geomorphic evidence for an emergent active thrust along the edge of the Po Plain: The Broni-Stradella fault. Journal of Geophysical Research, 108, 28. https://doi.org/10.1029/2001jb001546.

    Google Scholar 

  • Bongard, M. M. (1967). Problema uznavaniya (Problem of Recognition). Moscow: Nauka. (in Russian).

    Google Scholar 

  • Cloetingh, S., Cornu, T., Ziegler, P. A., & Beekman, F. (2006). Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth-Science Reviews, 74, 127–196.

    Article  Google Scholar 

  • D’Amico, V., Albarello, D., & Mantovani, E. (1999). A distribution-Free Analysis of Magnitude-Intensity Relationships: an Application to the Mediterranean Region. Physics and Chemistry of Earth, 24, 517–521.

    Article  Google Scholar 

  • Faure, M., Be Mezeme, E., Cocherie, A., Ross, I. P., Chemenda, A., & Boutelier, D. (2008). Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics, 27, 19. https://doi.org/10.1029/2007TC002115.

    Article  Google Scholar 

  • Gelfand, I., Guberman, Sh, Izvekova, M., Keilis-Borok, V., & Rantsman, E. (1972). Criteria of high seismicity, determined by pattern recognition. Tectonophysics, 13, 415–422.

    Article  Google Scholar 

  • Gelfand, I. M., Guberman, Sh A, Keilis-Borok, V. I., Knopoff, L., Press, F., Ranzman, I. Ya., et al. (1976). Pattern recognition applied to earthquake epicenters in California. Physics of the Earth and Planetary Interiors, 11, 227–283.

    Article  Google Scholar 

  • Geological map of France. (1996). 1:1,000,000. Orlean: BRGM.

    Google Scholar 

  • Giardini, D., Grünthal, G., Shedlock, K. M., & Zhang, P. (1999). The GSHAP Global Seismic Hazard Map. Annali di Geofisica, 42(6), 1225–1228.

    Google Scholar 

  • Girdler, R. W., & McConnell, D. A. (1994). The 1990 to 1991 Sudan earthquake sequence and the extent of the East African Rift System. Science, 264, 67–70.

    Article  Google Scholar 

  • Gorshkov, A., Kossobokov, V., & Soloviev, A. (2003). Recognition of earthquake-prone areas. In V. Keilis-Borok & A. Soloviev (Eds.), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction (pp. 239–310). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Gorshkov, A. I., Panza, G. F., Soloviev, A. A., Aoudia, A., & Peresan, A. (2009). Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6.0). Terra Nova, 21, 257–264. https://doi.org/10.1111/j.1365-3121.2009.00879.x.

    Article  Google Scholar 

  • Gorshkov, A. I., Soloviev, A. A., Jiménez, M. J., García-Fernández, M., & Panza, G. F. (2010). Recognition of earthquake-prone areas (M & #x2265; 5.0) in the Iberian Peninsula. Rendiconti Lincei Scienze Fisiche e Naturali., 21, 131–162. https://doi.org/10.1007/s12210-010-0075-3.

    Article  Google Scholar 

  • Grellet, B., Combes, P., Granier, T., Philip, H., & Mohammadioun, B. (1993). Sismotectonique de la France Me´tropolitaine dans son cadre ge´ologique et ge´ophysique avec atlas de 23 cartes au 1/4.000.000 ie`me et une carte au 1/1.000.000ie`me. Mémoire de la société géologique de France, 164(2), 1–76.

    Google Scholar 

  • Hudnut, K. W., Seeber, L., & Pacheo, J. (1989). Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophysical Research Letters, 16, 199–202.

    Article  Google Scholar 

  • King, G. (1983). The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems: The geometrical origin of b-value. Pure and Applied Geophysics, 121, 761–815.

    Article  Google Scholar 

  • King, G. (1986). Speculations on the geometry of the initiation a termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124, 567–583.

    Article  Google Scholar 

  • Kossobokov, V. G., & Nekrasova, A. K. (2012). Global Seismic Hazard Assessment Program Maps are Erroneous. Seismic Instruments., 48(2), 162–170. https://doi.org/10.3103/s0747923912020065.

    Article  Google Scholar 

  • Kossobokov, V., Peresan, A., & Panza, G. F. (2015). Reality Check: Seismic Hazard Models You Can Trust. EOS, 96(13), 9–11.

    Google Scholar 

  • Lasserre, C., Gaudemer, Y., Tapponnier, P., Me´riaux, A. S., Van der Woerd, J., & Yuan Daoyang, F. J. (2002). Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai. China. Journal of Geophysical Research., 107, 4. https://doi.org/10.1029/2000JB000060.

    Google Scholar 

  • Levret, A., Back, J.-C., & Cushing, M. (1994). Atlas of macroseismic maps for French earthquakes with their principal characteristics. Natural Hazards, 10, 19–46.

    Article  Google Scholar 

  • Marin, S., Avouac, J.-P., Marc Nicolas, M., & Schlupp, A. (2004). A Probabilistic approach to seismic hazard in metropolitan France. Bulletin of the Seismological Society of America, 94(6), 2137–2163.

    Article  Google Scholar 

  • Mazabraud, Y., Be´thoux, N., & Deroussi, S. (2005). Characterisation of the seismological pattern in a slowly deforming intraplate region: Central and western France. Tectonophysics, 409, 175–192.

    Article  Google Scholar 

  • Nicolas, M., Santoire, J. P., & Delpech, P. Y. (1990). Intraplate seismicity: new seismotectonic data in Western Europe. Tectonophysics, 179, 27–53.

    Article  Google Scholar 

  • Panza, G. F., Kossobokov, V., Peresan, A., & Nekrasova, A. (2014). Chapter 12. Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong? In M. Wyss & J. Shroder (Eds.), Earthquake Hazard Risk and Disasters (pp. 309–357). London: Elsevier.

    Chapter  Google Scholar 

  • Peresan, A., Gorshkov, A., Soloviev, A., & Panza, G. F. (2015). The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino di Geofisica Teorica ed Applicata., 1, 33. https://doi.org/10.4430/bgta0141.

    Google Scholar 

  • San’kov, V., Déverchère, J., Gaudemer, Y., & Houdry, F. (2000). Geometry and rate of faulting in the North Baikal Rift. Siberia. Tectonics, 19(4), 707–722.

    Article  Google Scholar 

  • Schlupp, A., Avouac, J. P., & Clauzon, G. (2001). Post-Messinian activity of the Nimes fault. Mémoire de la société géologique de France, 172, 697–711.

    Article  Google Scholar 

  • Scotti, O., Baumont, D., Quenet, G., & Levret, A. (2004). The French macroseismic database SISFRANCE: objectives, results and perspectives. Annals of Geophysics, 47(2/3), 571–581.

    Google Scholar 

  • SisFrance (2008). Base données de sismicité historique franҫaise. BRGM, EDF, ISRN. http://www.sisfrance.net. Accessed 19 March 2010.

  • Soloviev, A. A., Gvishiani, A. D., Gorshkov, A. I., Dobrovolsky, M. N., & Novikova, O. V. (2014). Recognition of Earthquake-Prone Areas: Methodology and Analysis of the Results. Izvestiya, Physics of the Solid Earth., 50, 151–168. https://doi.org/10.1134/S1069351314020116.

    Article  Google Scholar 

  • Stein, S., Geller, R., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562–563, 1–25.

    Article  Google Scholar 

  • Talwani, P. (1988). The intersection model for intraplate earthquakes. Seismological Research Letters, 59, 305–310.

    Google Scholar 

  • Talwani, P. (1999). Fault geometry and earthquakes in continental interiors. Tectonophysics, 305, 371–379.

    Article  Google Scholar 

  • Van der Woerd, J., Ryerson, J. F. J., Tapponnier, P., Gaudemer, Y., Finkel, R., Me´riaux, A. S., et al. (1998). Holocene left-slip rate determined by cosmogenic surface dating on the **datan segment of the Kunlun fault (Qinghai, China). Geology, 26, 695–698.

    Article  Google Scholar 

  • Vigny, C., Chéry, J., Duquesnoy, T., Jouanne, F., Ammann, J., Anzidei, M., et al. (2002). GPS network monitors the Western Alps’ deformation over a five-year period: 1993-199. Journal of Geodesy, 76(2), 63–76.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wyss, M., Nekrasova, A., & Kossobokov, V. (2012). Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 63, 927–935. https://doi.org/10.1007/s11069-012-0125-5.

    Article  Google Scholar 

  • Zonage sismique de la France (2011) http://www.planseisme.fr. Accessed 14 March 2016.

Download references

Acknowledgements

A.Gorshkov was partly funded by Russian Foundation of Basic Research (RFBR) according to the research Projects No. 16-55-12033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gorshkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, A., Gaudemer, Y. Seismogenic nodes defined with pattern recognition in the French Massif Central. J Iber Geol 45, 63–72 (2019). https://doi.org/10.1007/s41513-018-0087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0087-x

Keywords

Palabras clave

Navigation