Log in

Event plane determination from the zero degree calorimeter at the cooling storage ring external-target experiment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Cooling Storage Ring external-target experiment (CEE) spectrometer is used to study the nuclear matter created in heavy-ion collisions at \(\sqrt{s_{_{\mathrm{{NN}}}}}\) =  2.1–2.4 GeV with the aim to reveal the quantum chromodynamics phase structure in the high-baryon-density region. Collective flow is considered an effective probe for evaluating the properties of media during high-energy nuclear collisions. One of the main functions of the zero-degree calorimeter (ZDC), a subdetector system in the CEE, is to determine the reaction plane in heavy-ion collisions. This step is crucial for measuring the collective flow and other reaction-plane-related analyses. In this paper, we illustrate the procedures for event plane determination using the ZDC. Finally, isospin-dependent quantum molecular dynamics model-based predictions of the rapidity dependence of the directed and elliptical flows for p, d, t, \(^3\)He, and \(^4\)He, produced in 2.1 GeV U + U collisions, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.09132 and https://cstr.cn/31253.11.sciencedb.09132.

Notes

  1. Unlike in the experiment, the centrality here is determined from the impact parameter in the model calculations.

References

  1. P.B. Munzinger, J. Stachel, The quest for the quark–gluon plasma. Nature 448, 302–309 (2007). https://doi.org/10.1038/nature06080

    Article  ADS  Google Scholar 

  2. I. Arsene, I.G. Bearden, D. Beavis et al., Quark gluon plasma and color glass condensate at RHIC? Perspective of the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130

    Article  ADS  Google Scholar 

  3. B.B. Back, M.D. Baker, M. Ballintijn et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084

    Article  ADS  Google Scholar 

  4. K. Adcox, S.S. Adler, S. Afanasiev et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086

    Article  ADS  Google Scholar 

  5. J. Adams, M.M. Aggarwal, Z. Ahammed et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

    Article  ADS  Google Scholar 

  6. A. Bazavov, T. Bhattacharya, M. Cheng et al., Chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012). https://doi.org/10.1103/PhysRevD.85.054503

    Article  ADS  Google Scholar 

  7. K. Fukushima, C. Sasaki, The phase diagram of nuclear and quark matter at high baryon density. Prog. Part. Nucl. Phys 72, 99–154 (2013). https://doi.org/10.1016/j.ppnp.2013.05.003

    Article  ADS  Google Scholar 

  8. Y. Aoki, G. Endrodi, Z. Fodor et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006). https://doi.org/10.1038/nature05120

    Article  ADS  Google Scholar 

  9. K. Fukushima, T. Hatsuda, The phase diagram of dense QCD. Rept. Prog. Phys. 74, 014001 (2011). https://doi.org/10.1088/0034-4885/74/1/014001

    Article  ADS  Google Scholar 

  10. A. Bzdak, S. Esumi, V. Koch et al., Map** the phases of quantum chromodynamics with beam energy scan. Phys. Rept. 853, 1–87 (2020). https://doi.org/10.1016/j.physrep.2020.01.005

    Article  ADS  MATH  Google Scholar 

  11. X. Luo, S. Shi, N. Xu et al., A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particle 3(2), 278–307 (2020). https://doi.org/10.3390/particles3020022

    Article  Google Scholar 

  12. H.Z. Huang, F. Liu, X.F. Luo et al., Collective excitation in high-energy nuclear collisions—in memory of professor Lianshou Liu. Symmetry 15, 499 (2023). https://doi.org/10.3390/sym15020499

    Article  ADS  Google Scholar 

  13. L. Lü, H. Yi, Z.G. **ao et al., Conceptual design of the HIRFL-CSR external-target experiment. Sci. China Phys. Mech. Astron. 60(1), 012021 (2017). https://doi.org/10.1007/s11433-016-0342-x

    Article  ADS  Google Scholar 

  14. C.J. Horowitz, E.F. Brown, Y. Kim et al., A way forward in the study of the symmetry energy: experiment, theory, and observation. J. Phys. G 41, 093001 (2014). https://doi.org/10.1088/0954-3899/41/9/093001

    Article  ADS  Google Scholar 

  15. S. Zhang, J.H. Chen, H. Crawford et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 684, 224–227 (2010). https://doi.org/10.1016/j.physletb.2010.01.034

    Article  ADS  Google Scholar 

  16. A. Andronic, D. Blaschke, P. Braun-Munzinger et al., Hadron production in ultra-relativistic nuclear collisions: quarkyonic matter and a triple point in the phase diagram of QCD. Nucl. Phys. A 837, 65–86 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.005

    Article  ADS  Google Scholar 

  17. S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 23, 293–333 (2010). https://doi.org/10.1007/978-3-642-01539-7_10

    Article  ADS  Google Scholar 

  18. S.A. Bass, M. Belkacem, M. Bleicher et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1

    Article  ADS  Google Scholar 

  19. J. Steinheimer, A. Motornenko, A. Sorensen et al., The high-density equation of state in heavy-ion collisions: constraints from proton flow. Eur. Phys. J. C 82(10), 911 (2022). https://doi.org/10.1140/epjc/s10052-022-10894-w

    Article  ADS  Google Scholar 

  20. D. Oliinychenko, A. Sorensen, V. Koch et al., Sensitivity of Au+Au collisions to the symmetric nuclear matter equation of state at 2–5 nuclear saturation densities. ar**v:2208.11996

  21. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and \(\phi\) meson in Au+Au collisions at \(\sqrt{s_{_{{\rm {NN}}}}}\) = 200 GeV. Phys. Rev. Lett. 116(6), 062301 (2016). https://doi.org/10.1103/PhysRevLett.116.062301

    Article  ADS  Google Scholar 

  22. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Measurement of \(D^0\) azimuthal anisotropy at midrapidity in Au+Au collisions at \(\sqrt{s_{_{{\rm {NN}}}}}\) = 200 GeV. Phys. Rev. Lett. 118(21), 212301 (2017). https://doi.org/10.1103/PhysRevLett.118.212301

    Article  ADS  Google Scholar 

  23. S. Shi, An experimental review on elliptic flow of strange and multistrange hadrons in relativistic heavy ion collisions. Adv. High Energy Phys. 2016, 1987432 (2016). https://doi.org/10.1155/2016/1987432

    Article  Google Scholar 

  24. Y. Nara, A. Ohnishi, Mean-field update in the JAM microscopic transport model: mean-field effects on collective flow in high-energy heavy-ion collisions at \(\sqrt{s_{_{{\rm {NN}}}}}\) = 2–20 GeV energies. Phys. Rev. C 105(1), 014911 (2022). https://doi.org/10.1103/PhysRevC.105.014911

    Article  ADS  Google Scholar 

  25. Y. Nara, A. **no, K. Murase et al., Directed flow of \(\Lambda\) in high-energy heavy-ion collisions and \(\Lambda\) potential in dense nuclear matter. Phys. Rev. C 106(4), 044902 (2022). https://doi.org/10.1103/PhysRevC.106.044902

    Article  ADS  Google Scholar 

  26. S. Lan, S. Shi, Anisotropic flow in high baryon density region. Nucl. Sci. Tech. 33(3), 21 (2022). https://doi.org/10.1007/s41365-022-01006-0

    Article  Google Scholar 

  27. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions. Phys. Rev. Lett. 112(16), 162301 (2014). https://doi.org/10.1103/PhysRevLett.112.162301

    Article  ADS  Google Scholar 

  28. M.S. Abdallah, B.E. Aboona, J. Adam et al., Disappearance of partonic collectivity in \(\sqrt{s_{_{{\rm {NN}}}}}\) = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B 827, 137003 (2022). https://doi.org/10.1016/j.physletb.2022.137003

    Article  Google Scholar 

  29. H. Elfner, J.Y. Jia, Z.W. Lin et al., Dynamical evolution of heavy-ion collisions, in Properties of QCD Matter at High Baryon Density. ed. by X. Luo, Q. Wang, N. Xu, P. Zhuang (Springer, Singapore, 2022). https://doi.org/10.1007/978-981-19-4441-3_3

    Chapter  Google Scholar 

  30. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector. Phys. Rev. C 92, 014904 (2015). https://doi.org/10.1103/PhysRevC.92.014904

    Article  ADS  Google Scholar 

  31. K. Fukushima, D.E. Kharzeev, H.J. Warringa et al., The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033

    Article  ADS  Google Scholar 

  32. L. Adamczyk, J. Adam, L. Adamczyk et al., Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in \({\rm Au}+{\rm Au}\) collisions at \(\sqrt{s_{_{{\rm {NN}}}}}\) = 200 \(\rm GeV\). Phys. Rev. Lett. 128, 092301 (2022). https://doi.org/10.1103/PhysRevLett.128.092301

    Article  ADS  Google Scholar 

  33. X. Zhao, G. Ma, Search for the chiral magnetic effect in collisions between two isobars with deformed and neutron-rich nuclear structures. Phys. Rev. C 106(3), 034909 (2022). https://doi.org/10.1103/PhysRevC.106.034909

    Article  ADS  Google Scholar 

  34. B. Chen, X. Zhao, G. Ma, On the difference between signal and background of the chiral magnetic effect relative to spectator and participant planes in isobar collisions at \(\sqrt{s_{_{{\rm {NN}}}}}\) = 200 GeV. ar**v:2301.12076

  35. C. Hartnack, R.K. Puri, J. Aichelin et al., Modeling the many body dynamics of heavy ion collisions: present status and future perspective. Eur. Phys. J. A 1, 151–169 (1998). https://doi.org/10.1007/s100500050045

    Article  ADS  Google Scholar 

  36. H. Wang et al., Design and tests of the prototype a beam monitor of the CSR external target experiment. Nucl. Sci. Tech. 33(3), 36 (2022). https://doi.org/10.1007/s41365-022-01021-1

    Article  Google Scholar 

  37. W. Huang, F. Lu, H. Li et al., Laser test of the prototype of CEE time projection chamber. Nucl. Sci. Tech. 29(3), 41 (2018). https://doi.org/10.1007/s41365-018-0382-4

    Article  Google Scholar 

  38. D.D. Hu, J.M. Lu, J. Zhou et al., Extensive beam test study of prototype MRPCs for the T0 detector at the CSR external-target experiment. Eur. Phys. J. C 80(3), 282 (2020). https://doi.org/10.1140/epjc/s10052-020-7804-2

    Article  ADS  Google Scholar 

  39. X. Wang, D. Hu, M. Shao et al., CEE inner TOF prototype design and preliminary test results. JINST 17(09), P09023 (2022). https://doi.org/10.1088/1748-0221/17/09/P09023

    Article  Google Scholar 

  40. B. Wang, D. Han, Y. Wang et al., The CEE-eTOF wall constructed with new sealed MRPC. JINST 15(08), C08022 (2020). https://doi.org/10.1088/1748-0221/15/08/C08022

    Article  Google Scholar 

  41. L. Lyu, H. Yi, L. Duan et al., Simulation and prototype testing of multi-wire drift chamber arrays for the CEE. Nucl. Sci. Tech. 31(1), 11 (2020). https://doi.org/10.1007/s41365-019-0716-x

    Article  Google Scholar 

  42. S.H. Zhu, H.B. Yang, H. Pei et al., Prototype design of readout electronics for Zero Degree Calorimeter in the HIRFL-CSR external-target experiment. JINST 16(08), P08014 (2021). https://doi.org/10.1088/1748-0221/16/08/P08014

    Article  ADS  Google Scholar 

  43. Saint-Gobain, BC-408 material. https://www.crystals.saint-gobain.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416

  44. J. Adams, A. Ewigleben, S. Garrett et al., The STAR event plane detector. Nucl. Instrum. Meth. A 968, 163970 (2020). https://doi.org/10.1016/j.nima.2020.163970

    Article  Google Scholar 

  45. J. Aichelin, ‘Quantum’ molecular dynamics: a Dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy-ion collisions. Phys. Rept. 202, 233–360 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  ADS  Google Scholar 

  46. R. Brun, F. Bruyant, F. Carminati et al., GEANT detector description and simulation tool. (1994). https://doi.org/10.17181/CERN.MUHF.DMJ1

  47. A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–1678 (1998). https://doi.org/10.1103/PhysRevC.58.1671

    Article  ADS  Google Scholar 

  48. M. Ding, Y.P. Zhang, Y.J. Zhang et al., Calibration of the DAMPE plastic scintillator detector and its on-orbit performance. Res. Astron. Astrophys. 19(3), 047 (2019). https://doi.org/10.1088/1674-4527/19/3/47

    Article  ADS  Google Scholar 

  49. J. Adamczewski-Musch, O. Arnold, C. Behnke et al., Directed, elliptic, and higher order flow harmonics of protons, deuterons, and tritons in Au+Au collisions at \(\sqrt{s_{_{{\rm {NN}}}}}\) = 2.4 GeV. Phys. Rev. Lett. 125, 262301 (2020). https://doi.org/10.1103/PhysRevLett.125.262301

    Article  ADS  Google Scholar 

  50. M.S. Abdallah, B.E. Aboona, J. Adam et al., Light nuclei collectivity from \(\sqrt{s_{_{{\rm {NN}}}}}\) = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B 827, 136941 (2022). https://doi.org/10.1016/j.physletb.2022.136941

    Article  Google Scholar 

  51. P. Russotto, M.D. Cozma, A. Le Fevre et al., Flow probe of symmetry energy in relativistic heavy-ion reactions. Eur. Phys. J. A 50, 38 (2014). https://doi.org/10.1140/epja/i2014-14038-5

    Article  ADS  Google Scholar 

  52. M. Wang, J.Q. Tao, H. Zheng et al., Number-of-constituent-quark scaling of elliptic flow: a quantitative study. Nucl. Sci. Tech. 33, 37 (2022). https://doi.org/10.1007/s41365-022-01019-9

    Article  Google Scholar 

  53. J. Steinheimer, K. Gudima, A. Botvina et al., Hypernuclei, dibaryon and antinuclei production in high energy heavy-ion collisions: thermal production vs coalescence. Phys. Lett. B 714, 85–91 (2012). https://doi.org/10.1016/j.physletb.2012.06.069

    Article  ADS  Google Scholar 

  54. T.T. Wang, Y.G. Ma, Nucleon-number scalings of anisotropic flows and nuclear modification factor for light nuclei in the squeeze-out region. Eur. Phys. J. A 55, 102 (2019). https://doi.org/10.1140/epja/i2019-12788-0

    Article  ADS  Google Scholar 

  55. T.Z. Yan, Y.G. Ma, X.Z. Cai et al., Scaling of anisotropic flow and momentum-space densities for light particles in intermediate energy heavy ion collisions. Phys. Lett. B 638, 50–54 (2006). https://doi.org/10.1016/j.physletb.2006.05.018

    Article  ADS  Google Scholar 

  56. L.M. Fang, Y.G. Ma, S. Zhang, Simulation of collective flow of protons and deuterons in Au+Au collisions at \(\text{E}_\text{ beam }\)=1.23A GeV with the isospin-dependent quantum molecular dynamics model. Phys. Rev. C 107, 044904 (2023). https://doi.org/10.1103/PhysRevC.107.044904

Download references

Acknowledgements

We thank Prof. Li Ou and Zhigang **ao for generating the IQMD data and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection and analysis. The first draft of the manuscript was written by Li-Ke Liu and Shu-Su Shi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shu-Su Shi.

Ethics declarations

Conflict of interest

Nu Xu is an advisory board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported in part by the National Key Research and Development Program of China (Nos. 2022YFA1604900 and 2020YFE0202002), the National Natural Science Foundation of China (Nos. 12175084, 11890710, 11890711, 11927901), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34030000), and Fundamental Research Funds for Central Universities (No. CCNU220N003).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LK., Pei, H., Wang, YP. et al. Event plane determination from the zero degree calorimeter at the cooling storage ring external-target experiment. NUCL SCI TECH 34, 100 (2023). https://doi.org/10.1007/s41365-023-01262-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01262-8

Keywords

Navigation