Log in

Design and development of multi-channel front end electronics based on dual-polarity charge-to-digital converter for SiPM detector applications

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

With the development of silicon photomultiplier (SiPM) technology, front-end electronics for SiPM signal processing have been highly sought after in various fields. A compact 64-channel front-end electronics (FEE) system achieved by field-programmable gate array-based charge-to-digital converter (FPGA-QDC) technology was built and developed. The FEE consists of an analog board and FPGA board. The analog board incorporates commercial amplifiers, resistors, and capacitors. The FPGA board is composed of a low-cost FPGA. The electronics performance of the FEE was evaluated in terms of noise, linearity, and uniformity. A positron emission tomography (PET) detector with three different readout configurations was designed to validate the readout capability of the FEE for SiPM-based detectors. The PET detector was made of a 15 × 15 lutetium–yttrium oxyorthosilicate (LYSO) crystal array directly coupled with a SiPM array detector. The experimental results show that FEE can process dual-polarity charge signals from the SiPM detectors. In addition, it shows a good energy resolution for 511-keV gamma photons under the dual-end readout for the LYSO crystal array irradiated by a Na-22 source. Overall, the FEE based on FPGA-QDC shows promise for application in SiPM-based radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Ibach, H. Lüth, Solid-State Physics, 2nd edn. (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  2. A. Ronzhin, M. Albrow, S. Los et al., A SiPM-based TOF-PET detector with high speed digital DRS4 readout. Nucl. Instrum. Meth. Phy. Res. A 703, 109–113 (2013). https://doi.org/10.1016/j.nima.2012.11.043

    Article  ADS  Google Scholar 

  3. Q. Yang, X. Wang, Z. Kuang et al., Evaluation of two SiPM arrays for depth-encoding PET detectors based on dual-ended readout. IEEE Trans. Radiat. Plasma Med. Sci. 5(3), 315–321 (2021). https://doi.org/10.1109/TRPMS.2020.3008710

    Article  Google Scholar 

  4. J.W. Du, X.W. Bai, S.R. Cherry, Performance comparison of depth encoding detectors based on dual-ended readout and different SiPMs for high-resolution PET applications. Phys. Med. Biol. 64(15), 15NT03 (2019). https://doi.org/10.1088/1361-6560/ab1c37

    Article  Google Scholar 

  5. Z.H. Kuang, X.H. Wang, X. Fu et al., Dual-ended readout small animal PET detector by using 0.5 mm pixelated LYSO crystal arrays and SiPMs. Nucl. Instrum. Methods Phys. Res. A 917, 1–8 (2019). https://doi.org/10.1016/j.nima.2018.11.011

    Article  ADS  Google Scholar 

  6. H. Zhang, Y. Wang, J. Qi et al., Penalized maximum-likelihood reconstruction for improving limited-angle artifacts in a dedicated head and neck PET system. Phys. Med. Biol. 65(16), 165016 (2020). https://doi.org/10.1088/1361-6560/ab8c92

    Article  Google Scholar 

  7. Y. Li, C. Shen, Z. Zhang et al., Production and quality control of NICA-MPD shashlik electromagnetic calorimeter in Tsinghua University. JINST 17, T04005 (2022). https://doi.org/10.1088/1748-0221/17/04/T04005

    Article  Google Scholar 

  8. M.P. Casado, On behalf of the ATLAS HGTD group, a high-granularity timing detector for the ATLAS phase-II upgrade. Nucl. Instrum. Meth. Phys. Res. A 1032, 166628 (2022). https://doi.org/10.1016/j.nima.2022.166628

    Article  Google Scholar 

  9. J. Freeman, Silicon photomultipliers for the CMS hadron calorimeter. Nucl. Instrum. Meth. Phys. Res. A 617, 393–395 (2010). https://doi.org/10.1016/j.nima.2009.10.132

    Article  ADS  Google Scholar 

  10. G. Llosa, SiPM-based Compton cameras. Nucl. Instrum. Meth. Phys. Res. A 926, 148–152 (2019). https://doi.org/10.1016/j.nima.2018.09.053

    Article  ADS  Google Scholar 

  11. K. Doroud, M.C.S. Williams, K. Yamamoto, The strip silicon photo-multiplier: an innovation for enhanced time and position measurement. Nucl. Instrum. Meth. Phys. Res. A 853, 1–8 (2017). https://doi.org/10.1016/j.nima.2017.02.016

    Article  ADS  Google Scholar 

  12. K. Doroud, D.W. Kim, K.H. Kwon et al., The strip SiPM: a study of single photon time resolution. JINST 16, P06017 (2021). https://doi.org/10.1088/1748-0221/16/06/P06017

    Article  Google Scholar 

  13. D. Wang, C. Lin, L. Yang et al., Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors. Nucl. Sci. Tech. 31, 48 (2020). https://doi.org/10.1007/s41365-020-00755-0

    Article  Google Scholar 

  14. H. Wang, J. Zhou, X. Ouyang et al., Application of pole-zero cancellation circuit in nuclear signal filtering and sha** algorithm. Nucl. Sci. Tech. 32, 86 (2021). https://doi.org/10.1007/s41365-021-00916-9

    Article  Google Scholar 

  15. X. Wang, J. Zhou, M. Wang et al., Signal modeling and impulse response sha** for semiconductor detectors. Nucl. Sci. Tech. 33, 46 (2022). https://doi.org/10.1007/s41365-022-01027-9

    Article  Google Scholar 

  16. H. Zhang, H. Shi, Z. Li et al., Digitalization of inverting filter sha** circuit for nuclear pulse signals. Nucl. Sci. Tech. 31, 86 (2020). https://doi.org/10.1007/s41365-020-00799-2

    Article  Google Scholar 

  17. R. Dong, L. Zhao, J. Qin et al., Design of a 20-Gsps 12-bit time-interleaved analog-to-digital conversion system. Nucl. Sci. Tech. 32, 25 (2021). https://doi.org/10.1007/s41365-021-00863-5

    Article  Google Scholar 

  18. H. Park, J.S. Lee, Highly multiplexed SiPM signal readout for brain-dedicated TOF-DOI PET detectors. Phys. Med. 68, 117–123 (2019). https://doi.org/10.1016/j.ejmp.2019.11.016

    Article  Google Scholar 

  19. J. Du, J.P. Schmall, Y. Yang et al., A simple capacitive charge-division readout for position-sensitive solid-state photomultiplier arrays. IEEE Trans. Nucl. Sci. 60(5), 3188–3197 (2013). https://doi.org/10.1109/TNS.2013.2275012

    Article  ADS  Google Scholar 

  20. A.J. Goertzen, X. Zhang, M.M. McClarty et al., Design and performance of a resistor multiplexing readout circuit for a SiPM detector. IEEE Trans. Nucl. Sci. 60(3), 1541–1549 (2013). https://doi.org/10.1109/TNS.2013.2251661

    Article  ADS  Google Scholar 

  21. T. Fujiware, H. Takahashi, K. Shimazoe et al., Multi-level time-over-threshold method for energy resolving multi-channel systems. IEEE Trans. Nucl. Sci. 57(5), 2545–2548 (2010). https://doi.org/10.1109/TNS.2010.2061236

    Article  ADS  Google Scholar 

  22. A.L. Goertzen, D.V. Elburg, Performance characterization of MPPC modules for TOF-PET applications. IEEE Trans. Radiat. Plasma Med. Sci. 3(4), 475–482 (2019). https://doi.org/10.1109/TRPMS.2018.2885439

    Article  Google Scholar 

  23. C. Ma, X. Dong, L. Yu et al., Design and evaluation of an FPGA-ADC prototype for the PET detector based on LYSO crystals and SiPM arrays. IEEE Trans. Radiat. Plasma Med. Sci. 6(1), 33–41 (2022). https://doi.org/10.1109/TRPMS.2021.3062362

    Article  Google Scholar 

  24. S. Ahmad, J. Fleury, C. Taille et al., Triroc: a multi-channel SiPM read-out ASIC for PET/PET-ToF application. IEEE Trans. Nucl. Sci. 62(3), 664–668 (2015). https://doi.org/10.1109/TNS.2015.2397973

    Article  ADS  Google Scholar 

  25. V. Nadig, B. Weissler, H. Radermacher et al., Investigation of the power consumption of the PETsys TOFPET2 ASIC. IEEE Trans. Radiat. Plasma Med. Sci. 4(3), 378–388 (2020). https://doi.org/10.1109/TRPMS.2019.2955032

    Article  Google Scholar 

  26. J.Y. Won, J.S. Lee, Highly integrated FPGA-only signal digitization method using single-ended memory interface input receivers for time-of-flight PET detectors. IEEE Trans. Biomed. Circuits Syst. 12(6), 1401–1409 (2018). https://doi.org/10.1109/TBCAS.2018.2865581

    Article  Google Scholar 

  27. X. Kong, Y. Wang, L. Wang et al., An FPGA-based fast linear discharge readout scheme enabling simultaneous time and energy measurements for TOF-PET detectors. IEEE Trans. Radiat. Plasma Med. Sci. 4(1), 30–36 (2020). https://doi.org/10.1109/TRPMS.2019.2926990

    Article  Google Scholar 

  28. K. Hu, W. Li, Y. Li et al., Improvement of sigma delta charge readout method for radiation detector application. Nucl. Instrum. Meth. Phys. Res. A 1024, 166054 (2022). https://doi.org/10.1016/j.nima.2021.166054

    Article  Google Scholar 

  29. A. Mohammad, M. Boukadoum, A. Khouas, A multihit time-to-digital converter architecture on FPGA. IEEE Trans. Instrum. Meas. 58(3), 530–540 (2009). https://doi.org/10.1109/TIM.2008.2005080

    Article  ADS  Google Scholar 

  30. F. Garzetti, N. Corna, N. Lusardi et al., Time-to-Digital converter IP-core for FPGA at state of the art. IEEE Access 9, 85515–85528 (2021). https://doi.org/10.1109/ACCESS.2021.3088448

    Article  Google Scholar 

  31. Y. Wang, C. Liu, A 3.9 ps time-interval RMS precision time-to-digital converter using a dual-sampling method in an ultrascale FPGA. IEEE Trans. Nucl. Sci. 63(5), 2617–2621 (2016). https://doi.org/10.1109/TNS.2016.2596305

    Article  ADS  Google Scholar 

  32. C. Liu, Y. Wang, A 128-Channel, 710 M samples/second, and less than 10 ps RMS resolution time-to-digital converter implemented in a Kintex-7 FPGA. IEEE Trans. Nucl. Sci. 62(3), 773–783 (2016). https://doi.org/10.1109/TNS.2015.2421319

    Article  ADS  Google Scholar 

  33. M. Pizzichemi, A. Polesel, G. Stringhini et al., On light sharring TOF-PET modules with depth of interatction and 157 ps FWHM coincidence time resolution. Phys. Med. Biol. 64, 155008 (2019). https://doi.org/10.1088/1361-6560/ab2cb0

    Article  Google Scholar 

  34. J.W. Cates, C.S. Levin, Evaluation of a clinical TOF-PET detector design that achieves < 100 ps coincidence time resolution. Phys. Med. Biol. 63(11), 115011 (2008). https://doi.org/10.1088/1361-6560/aac504

    Article  Google Scholar 

  35. D.R. Schaart, Physics and technology of time-of-flight PET detector. Phys. Med. Biol. 66(9), 09TR01 (2021). https://doi.org/10.1088/1361-6560/abee56

    Article  Google Scholar 

  36. K. Hu, X. Cheng, Y. Zhong et al., Performance Comparison of Two SiPM Arrays With Matrix or Row/Column Output Electrodes for PET and Radiation Detector Applications. In 2018 IEEE Nuclear Science Symposium Conference Record, (Sydney, Australia, 2018). doi: https://doi.org/10.1109/NSSMIC.2018.8824588

  37. J.J. Ge, Q.Y. Li, C. Su et al., Development of a front-end electronics for thin-gap resistive plate chamber. JINST 16, T11004 (2021). https://doi.org/10.1088/1748-0221/16/11/T11004

    Article  ADS  Google Scholar 

  38. Z. He, Design, review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detector. Nucl. Instrum. Meth. Phys. Res. A 463, 250–4267 (2001). https://doi.org/10.1016/S0168-9002(01)00223-6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yu-Ying Li, Chang-Yu Li and Kun Hu. The first draft of the manuscript was written by Kun Hu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kun Hu.

Additional information

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2022QA039) and the Program of Qilu Young Scholars of Shandong University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YY., Li, CY. & Hu, K. Design and development of multi-channel front end electronics based on dual-polarity charge-to-digital converter for SiPM detector applications. NUCL SCI TECH 34, 18 (2023). https://doi.org/10.1007/s41365-023-01168-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01168-5

Keywords

Navigation