Log in

Enhancement in optical absorption of CsI(Na)

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Discussions pertaining to enhancement in the luminous efficiency of cesium iodide (CsI) detectors doped with sodium (Na) abound. In this study, the defect structure of one Cs atom replaced by one Na atom is calculated using the ab initio method. Subsequently, the electronic band structures, densities of states, optical absorption spectra, phonons, and transport properties of CsI in perfect and defective structures are investigated. The absorption spectra of CsI with and without Na impurities are compared. It is discovered that the impurity levels in the forbidden band are generated from the shell electron distributions of the impurity atoms, not from lattice distortions. Furthermore, it is discovered that the optical absorption can be enhanced by do** CsI with Na.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Ouyang, B. Liu, Recent advances in scintillators boosted by photonic crystals. Mod. Appl. Phys. 8, 040101 (2017)

    Google Scholar 

  2. Q. Zhao, Z. Zhang, X. Ouyang, Electronic structure and optical properties of CsI under high pressure: a first-principles study. RSC Adv. 7, 52449–52455 (2017). https://doi.org/10.1039/C7RA08777B

    Article  ADS  Google Scholar 

  3. X. Ouyang, B. Liu, X. **ang et al., Enhanced light output of CsI(Na) scintillators by photonic crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 969, 164007 (2020)

    Article  Google Scholar 

  4. C.M. Lewis, J.I. Collar, Response of undoped cryogenic CsI to low-energy nuclear recoils. Phys. Rev. C. 104, 014612 (2021). https://doi.org/10.1103/PhysRevC.104.014612

    Article  ADS  Google Scholar 

  5. D. Poda, Scintillation in low-temperature particle detectors. Physics 3, 473–535 (2021). https://doi.org/10.3390/physics3030032

    Article  ADS  Google Scholar 

  6. J.-C. Hsu, Y.-S. Ma, Luminescence of CsI and CsI: Na films under LED and X-ray excitation. Coatings 9, 751 (2019). https://doi.org/10.3390/coatings9110751

    Article  Google Scholar 

  7. F. Liu, X. Ouyang, M. Tang et al., Scaling-induced enhancement of X-ray luminescence in CsI(Na) crystals. Appl. Phys. Lett. 102, 181107 (2013). https://doi.org/10.1063/1.4804368

    Article  ADS  Google Scholar 

  8. W.J. Weber, Y. Zhang, L. Wang, Review of dynamic recovery effects on ion irradiation damage in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 277, 1–5 (2012)

    Article  ADS  Google Scholar 

  9. X. Ying, Z. Ni, Study on the absorption spectra and electronic structures of the CsI crystal with cesium vacancy. Comput. Mater. Sci. 48, 658–661 (2010). https://doi.org/10.1016/j.commatsci.2010.02.036

    Article  Google Scholar 

  10. S.A. Egorov, E. Rabani, B.J. Berne, Nonradiative relaxation processes in condensed phases: quantum versus classical baths. J. Chem. Phys. 110, 5238–5248 (1999). https://doi.org/10.1063/1.478420

    Article  ADS  Google Scholar 

  11. Z. Zhang, Q. Zhao, Y. Li, X.-P. Ouyang, Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl). J. Korean Phys. Soc. 68, 1069–1074 (2016). https://doi.org/10.3938/jkps.68.1069

    Article  ADS  Google Scholar 

  12. W. Khan, C.-H. He, Q.-M. Zhang et al., Design of CsI(TI) detector system to search for lost radioactive source. Nucl. Sci. Tech. 30, 132 (2019). https://doi.org/10.1007/s41365-019-0658-3

    Article  Google Scholar 

  13. X. Ouyang, B. Liu, X. **ang et al., CsI(Na) micron-scale particles-based composite material for fast pulsed X-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 953, 163120 (2020). https://doi.org/10.1016/j.nima.2019.163120

    Article  Google Scholar 

  14. X.-L. Sun, J.-G. Lü, T. Hu et al., Fast light of CsI(Na) crystals. Chin. Phys. C 35, 1130–1133 (2011). https://doi.org/10.1088/1674-1137/35/12/009

    Article  ADS  Google Scholar 

  15. X. Ouyang, B. Liu, X. **ang et al., Enhancement of the energy resolution of CsI(Na) scintillators by photonic crystals prepared with dry-transfer technique. Opt. Express 28, 33077 (2020). https://doi.org/10.1364/OE.404815

    Article  ADS  Google Scholar 

  16. A. Cedillo, P. Cortona, Effect of pressure on cesium iodide band gap. Wuli Huaxue Xuebao/ Acta Phys. Chim. Sin. 34, 208–212 (2018). https://doi.org/10.3866/PKU.WHXB201707031 (in Chinese)

    Article  Google Scholar 

  17. MedeA is Registered Trademark of Materials Design, Inc. https://www.materialsdesign.com/

  18. Material Studio is Dassault Systèmes BIOVIA software program. https://www.3ds.com/products-services/biovia/.

  19. Abinit is Distributed Under the Terms of the GNU GPL. https://www.abinit.org/

  20. Quantum Espresso is Distributed Under the Terms of the GNU GPL. http://www.quantum-espresso.org/

  21. Z. Zhang, Q. Zhao, X. Ouyang, First-principle study for Tl, Na substitution do** CsI. J. North China Electr. Power Univ. 42, 101 (2015). https://doi.org/10.3969/j.ISSN.1007-2691.2015.06.15 (in Chinese)

    Article  Google Scholar 

  22. W.G. Liu, Y. Qian, D.X. Zhang et al., Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel. Nucl. Sci. Tech. 28, 82 (2017). https://doi.org/10.1007/s41365-017-0235-6

    Article  ADS  Google Scholar 

  23. Y.C. Lu, C.L. Ren, C.Y. Wang et al., First-principles study on the mechanical properties of M2CT2 (M = Ti, Zr, Hf; T = O, F, OH) MXenes. Nucl. Sci. Tech. 30, 172 (2019). https://doi.org/10.1007/s41365-019-0688-x

    Article  Google Scholar 

  24. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  25. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  26. J. Paier, R. Hirschl, M. Marsman et al., The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2–1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102 (2005). https://doi.org/10.1063/1.1926272

    Article  ADS  Google Scholar 

  27. J. Paier, M. Marsman, K. Hummer et al., Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006). https://doi.org/10.1063/1.2187006

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Phys. Rev. Lett. 78, 1396–1396 (1997). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  29. J.P.J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  30. K. Parlinski, Z.Q. Li, Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997). https://doi.org/10.1103/PhysRevLett.78.4063

    Article  ADS  Google Scholar 

  31. G.K.H. Madsen, D.J. Singh, BoltzTraP, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  MATH  Google Scholar 

  32. R. Triloki, B.K. Rai, Singh, Optical and structural properties of CsI thin film photocathode. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. 785, 70–76 (2015). https://doi.org/10.1016/j.nima.2015.02.059

    Article  ADS  Google Scholar 

  33. H. Zhong, Z.H. Levine, J.W. Wilkins, Linear polarizability calculation for rare-gas atoms in the time-dependent local-density approximation with a scissors operator. Phys. Rev. A. 43, 4629–4636 (1991). https://doi.org/10.1103/PhysRevA.43.4629

    Article  ADS  Google Scholar 

  34. B. Wei, X. Yu, C. Yang, et al., Low-temperature anharmonicity and the thermal conductivity of cesium iodide. Phys. Rev. B. 99, 184301 (2019). https://doi.org/10.1103/PhysRevB.99.184301

Download references

Acknowledgements

The authors thank Professor **ao-** Ouyang for his inputs pertaining to CsI scintillator experiments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Wei Cheng, Pei-Sheng Liu, Min-Ju Ying and Feng-Shou Zhang. The first draft of the manuscript was written by Wei Cheng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Cheng or Feng-Shou Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12135004, 11635003, 11961141004, and 11875088).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Liu, PS., Ying, MJ. et al. Enhancement in optical absorption of CsI(Na). NUCL SCI TECH 33, 29 (2022). https://doi.org/10.1007/s41365-022-01020-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01020-2

Keywords

Navigation