Log in

A reinvestigation of low molecular weight components in SOA produced by cyclohexene ozonolysis

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The ozonolysis of cyclohexene is an important model system for understanding the more complex reaction of O3 with monoterpenes; however, many previous studies have come to qualitatively different conclusions about the composition of the secondary organic aerosol (SOA) formed in this system. In the present study, the composition of the SOA produced by cyclohexene ozonolysis in the absence of seed aerosols has been investigated online and off-line using synchrotron-based thermal desorption/tunable vacuum ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) in conjunction with a custom-built smog chamber. On the basis of the molecular ions observed by mass spectrometry at 11.5 eV, it was found that dicarboxylic acids, dialdehydes, and cyclic anhydrides are the predominant low molecular weight components in the particle phase. The results also indicated that TD-VUV-TOF-PIAMS coupled with filter sampling is a potentially useful tool for the investigation of SOA composition both in the field and in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.P. Fraser, G.R. Cass, B.R.T. Simoneit, Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel. Environ. Sci. Technol. 32, 2051–2060 (1998). https://doi.org/10.1021/es970916e

    Article  Google Scholar 

  2. R.J. Griffin, D.R. Cocker, R.C. Flagan et al., Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 104, 3555–3567 (1999). https://doi.org/10.1029/1998JD100049

    Article  Google Scholar 

  3. B.R. Larsen, D.D. Bella, M. Glasius, R. Winterhalter et al., Gas-phase OH oxidation of monoterpenes: gaseous and particulate products. J. Atmos. Chem. 38, 231–276 (2001). https://doi.org/10.1023/A:1006487530903

    Article  Google Scholar 

  4. S. Hatakeyama, T. Tanonaka, J.H. Weng et al., Ozone-cyclohexene reaction in air: quantitative analysis of particulate products and the reaction mechanism. Environ. Sci. Technol. 19, 935–942 (1985). https://doi.org/10.1021/es00140a008

    Article  Google Scholar 

  5. M. Kalberer, J. Yu, D.R. Cocker et al., Aerosol formation in the cyclohexene-ozone system. Environ. Sci. Technol. 34, 4894–4901 (2000). https://doi.org/10.1021/es001180f

    Article  Google Scholar 

  6. P.J. Ziemann, Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds. J. Phys. Chem. A 106, 4390–4402 (2002). https://doi.org/10.1021/jp012925m

    Article  Google Scholar 

  7. S.M. Aschmann, E.C. Tuazon, J. Arey et al., Products of the gas-phase reaction of O3 with cyclohexene. J. Phys. Chem. A 107, 2247–2255 (2003). https://doi.org/10.1021/jp022122e

    Article  Google Scholar 

  8. J.F. Hamilton, A.C. Lewis, J.C. Reynolds et al., Investigating the composition of organic aerosol resulting from cyclohexene ozonolysis: low molecular weight and heterogeneous reaction products. Atmos. Chem. Phys. 6, 4973–4984 (2006). https://doi.org/10.5194/acp-6-4973-2006

    Article  Google Scholar 

  9. M. Narukawa, Y. Matsumi, J. Matsumoto et al., Real-time analysis of secondary organic aerosol particles formed from cyclohexene ozonolysis using a laser-ionization single-particle aerosol mass spectrometer. Anal. Sci. 23, 507–512 (2007). https://doi.org/10.2116/analsci.23.507

    Article  Google Scholar 

  10. M.P. Rissanen, T. Kurtén, M. Sipilä et al., The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J. Am. Chem. Soc. 136, 15596–15606 (2014). https://doi.org/10.1021/ja507146s

    Article  Google Scholar 

  11. W.F. Rogge, M.A. Mazurek, L.M. Hildemann et al., Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos. Environ. Part A 27, 1309–1330 (1993). https://doi.org/10.1016/0960-1686(93)90257-y

    Article  Google Scholar 

  12. B.J. Williams, A.H. Goldstein, D.B. Millet et al., Chemical speciation of organic aerosol during the international consortium for atmospheric research on transport and transformation 2004: results from in situ measurements. J. Geophys. Res. (Atmos.) 112, D10S26 (2007). https://doi.org/10.1029/2006jd007601

    Article  Google Scholar 

  13. E.R. Mysak, K.R. Wilson, M. Jimenez-Cruz et al., Synchrotron radiation based aerosol time-of-flight mass spectrometry for organic constituents. Anal. Chem. 77, 5953–5960 (2005). https://doi.org/10.1021/ac050440e

    Article  Google Scholar 

  14. M.T. Baeza-Romero, F. Gaie-Levrel, A. Mahjoub et al., A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis. Eur. Phys. J. D 70, 154 (2016). https://doi.org/10.1140/epjd/e2016-70264-8

    Article  Google Scholar 

  15. W.Z. Fang, L. Gong, X.B. Shang et al., Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments. Anal. Chem. 83, 9024–9032 (2011). https://doi.org/10.1021/ac201838e

    Article  Google Scholar 

  16. E. Gloaguen, E.R. Mysak, S.R. Leone et al., Investigating the chemical composition of mixed organic–inorganic particles by “soft” vacuum ultraviolet photoionization: the reaction of ozone with anthracene on sodium chloride particles. Int. J. Mass Spectrom. 258, 74–85 (2006). https://doi.org/10.1016/j.ijms.2006.07.019

    Article  Google Scholar 

  17. N.N. Wei, C.J. Hu, S.S. Zhou et al., VUV photoionization aerosol mass spectrometric study on the iodine oxide particles formed from O3-initiated photooxidation of diiodomethane (CH2I2). RSC Adv 7, 56779 (2017). https://doi.org/10.1039/c7ra11413c

    Article  Google Scholar 

  18. G. Pan, C.J. Hu, Z.Y. Wang et al., Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry. Rapid Commun. Mass Spectrom. 26, 189–194 (2011). https://doi.org/10.1002/rcm.5295

    Article  Google Scholar 

  19. W.Z. Fang, L. Gong, Q. Zhang et al., Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry. Environ. Sci. Technol. 46, 3898–3904 (2012). https://doi.org/10.1021/es204669d

    Article  Google Scholar 

  20. W.Z. Fang, L. Gong, X.B. Shan et al., A VUV photoionization organic aerosol mass spectrometric study with synchrotron radiation. J. Electron Spectrosc. Relat. Phenom. 184, 129–133 (2011). https://doi.org/10.1016/j.elspec.2010.12.004

    Article  Google Scholar 

  21. S.S. Wang, R.H. Kong, X.B. Shan et al., Performance of the atomic and molecular physics beamline at the National Synchrotron Radiation Laboratory. J. Synchrotron Rad. 13, 415–420 (2006). https://doi.org/10.1107/S0909049506030536

    Article  Google Scholar 

  22. A.W. Ray, C.A. Taatjes, O. Welz et al., Synchrotron photoionization measurements of OH-initiated cyclohexene oxidation: ring-preserving products in OH + cyclohexene and hydroxycyclohexyl + O2 reactions. J. Phys. Chem. A 116, 6720–6730 (2012). https://doi.org/10.1021/jp3022437

    Article  Google Scholar 

  23. K. Sato, Chemical compositions of secondary organic aerosol from the ozonolysis of cyclohexene in the absence of seed particles. Chem. Lett. 34, 1584–1585 (2005). https://doi.org/10.1246/cl.2005.1584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Qun Huang or Fu-Yi Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11575178, 91544105, U1532137, 91544228, and U1232130).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, ZH., Yu, YP. et al. A reinvestigation of low molecular weight components in SOA produced by cyclohexene ozonolysis. NUCL SCI TECH 29, 162 (2018). https://doi.org/10.1007/s41365-018-0491-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0491-0

Keywords

Navigation