Log in

DNA origami-templated assembly of plasmonic nanostructures with enhanced Raman scattering

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

DNA origami have been established as versatile templates to fabricate plasmonic nanostructures in predefined shapes and multiple dimensions. Limited to the size of DNA origami, which are approximate to 100 nm, it is hard to assemble more intricate plasmonic nanostructures in large scale. Herein, we used rectangular DNA origami as the template to anchor two 30-nm gold nanoparticles (AuNPs) which induced dimers nanostructures. Transmission electron microscopy (TEM) images showed the assembly of AuNPs with high yields. Using the linkers to organize the DNA origami templates into nanoribbons, chains of AuNPs were obtained, which was validated by the TEM images. Furthermore, we observed a significant Raman signal enhancement from molecules covalently attached to the AuNP-dimers and AuNP-chains. Our method opens up the prospects of high-ordered plasmonic nanostructures with tailored optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Peng, Y. Su, Y. Zhong et al., Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612–623 (2014). https://doi.org/10.1021/ar400221g

    Article  Google Scholar 

  2. J. Mcphillips, A. Murphy, M.P. Jonsson et al., High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4, 2210–2216 (2010). https://doi.org/10.1021/nn9015828

    Article  Google Scholar 

  3. J. Chao, D. Zhu, Y. Zhang et al., DNA nanotechnology-enabled biosensors. Biosens. Bioelectron. 76, 68–79 (2016). https://doi.org/10.1002/adma.201002767

    Article  Google Scholar 

  4. J. Zhou, Y. Zuo, X. Wan et al., Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 135, 8484–8487 (2013). https://doi.org/10.1021/ja403318y

    Article  Google Scholar 

  5. F. Wang, C. Li, H. Chen et al., Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013). https://doi.org/10.1021/ja310501y

    Article  Google Scholar 

  6. Ł. Bujak, T. Ishii, D.K. Sharma et al., Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures. Nanoscale (2017). https://doi.org/10.1039/c6nr08740j

    Google Scholar 

  7. W. Shen, M.F. Bruist, S.D. Goodman et al., A protein-driven DNA device that measures the excess binding energy of proteins that distort DNA. Angew. Chem. Int. Ed. 43, 4750–4752 (2004). https://doi.org/10.1117/12.2051277

    Article  Google Scholar 

  8. M. Lee, J.U. Kim, K.J. Lee et al., Aluminum nanoarrays for plasmon-enhanced light harvesting. ACS Nano 9, 6206–6213 (2015). https://doi.org/10.1021/acsnano.5b01541

    Article  Google Scholar 

  9. K. Dopf, S. Heunisch, P. Schwab et al., Superresolution optical fluctuation imaging (SOFI) aided nanomanipulation of quantum dots using AFM for novel artificial arrangements of chemically functionalized colloidal quantum dots and plasmonic structures. SPIE Photonics Eur 9, 91260N–912609N (2014). https://doi.org/10.1117/12.2051277

    Google Scholar 

  10. Y. **ong, Z. Liu, C. Sun et al., Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007). https://doi.org/10.1021/nl0716449

    Article  Google Scholar 

  11. T. Tian, J.-C. Zhang, H.-Z. Lei et al., Synchrotron radiation X-ray fluorescence analysis of Fe, Zn and Cu in mice brain associated with Parkinson’s disease. Nucl. Sci. Tech. 26, 030506 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.030506

    Google Scholar 

  12. N. Fang, H. Lee, C. Sun et al., Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). https://doi.org/10.1126/science.1108759

    Article  Google Scholar 

  13. S. Biswas, J. Duan, D. Nepal et al., Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures. Nano Lett. 13, 2220–2225 (2013). https://doi.org/10.1021/nl4007358

    Article  Google Scholar 

  14. J.A. Fan, Y. He, K. Bao et al., DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett. 11, 4859–4864 (2011). https://doi.org/10.1021/nl203194m

    Article  Google Scholar 

  15. G. Dai, X. Lu, Z. Chen et al., DNA origami-directed, discrete three-dimensional plasmonic tetrahedron nanoarchitectures with tailored optical chirality. ACS Appl. Mater. Interfaces 6, 5388–5392 (2014). https://doi.org/10.1021/am501599f

    Article  Google Scholar 

  16. C. Helgert, E. Pshenay-Severin, M. Falkner et al., Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Lett. 11, 4400–4404 (2011). https://doi.org/10.1021/nl202565e

    Article  Google Scholar 

  17. A. Dhawan, Y. Du, D. Batchelor et al., Hybrid top-down and bottom-up fabrication approach for wafer-scale plasmonic nanoplatforms. Small 7, 727–731 (2011). https://doi.org/10.1002/smll.201002186

    Article  Google Scholar 

  18. B. Wei, M. Dai, P. Yin, Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012). https://doi.org/10.1038/nature11075

    Article  Google Scholar 

  19. P.W. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006). https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  20. E.S. Andersen, M. Dong, M.M. Nielsen et al., Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009). https://doi.org/10.1038/nature07971

    Article  Google Scholar 

  21. H. Dietz, S.M. Douglas, W.M. Shih, Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009). https://doi.org/10.1126/science.1174251

    Article  Google Scholar 

  22. H. Zhang, J. Chao, D. Pan et al., DNA origami-based shape IDs for single-molecule nanomechanical genoty**. Nat. Commun. 8, 14738 (2017). https://doi.org/10.1038/ncomms14738

    Article  Google Scholar 

  23. A. Kuzyk, R. Schreiber, Z. Fan et al., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012). https://doi.org/10.1038/nature10889

    Article  Google Scholar 

  24. H. Gu, J. Chao, S.-J. **ao et al., A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010). https://doi.org/10.1038/nature09026

    Article  Google Scholar 

  25. M.J. Urban, C. Zhou, X. Duan et al., Optically resolving the dynamic walking of a plasmonic walker couple. Nano Lett. 15, 8392–8396 (2015). https://doi.org/10.1021/acs.nanolett.5b04270

    Article  Google Scholar 

  26. X. Lan, Z. Chen, G. Dai et al., Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 135, 11441–11444 (2013). https://doi.org/10.1021/ja404354c

    Article  Google Scholar 

  27. P. KüHler, E.-M. Roller, R. Schreiber et al., Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. Nano Lett. 14, 2914–2919 (2014). https://doi.org/10.1021/nl5009635

    Article  Google Scholar 

  28. V.V. Thacker, L.O. Herrmann, D.O. Sigle et al., DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 5, 3448–3453 (2014). https://doi.org/10.1038/ncomms4448

    Article  Google Scholar 

  29. B. Liu, C. Song, D. Zhu et al., DNA-origami-based assembly of anisotropic plasmonic gold nanostructures. Small 13, 1603991–1603999 (2017). https://doi.org/10.1002/smll.201603991

    Article  Google Scholar 

  30. X. Lan, X. Lu, C. Shen et al., Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 137, 457–462 (2014). https://doi.org/10.1021/ja511333q

    Article  Google Scholar 

  31. C. Zhou, X. Duan, N. Liu, A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 9102 (2015). https://doi.org/10.1038/ncomms9102

    Google Scholar 

  32. S. Pal, Z. Deng, H. Wang et al., DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 133, 17606–17609 (2011). https://doi.org/10.1021/ja207898r

    Article  Google Scholar 

  33. M. Pilo-Pais, A. Watson, S. Demers et al., Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Nano Lett. 14, 2099–2104 (2014). https://doi.org/10.1021/nl5003069

    Article  Google Scholar 

  34. Z. Chen, X. Lan, Y.-C. Chiu et al., Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates. Acs Photonics 2, 392–397 (2015). https://doi.org/10.1021/ph500434f

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Chao or Lian-Hui Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 21475064), the Natural Science Foundation of Jiangsu Province (No. BK20151504), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R37), Sci-Tech Support Plan of Jiangsu Province (No. BE2014719), the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. PAPD, YX03001), the Mega-projects of Science and Technology Research (No. AWS13C007) and NUPTSF (No. 214175).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, MZ., Wang, X., **ng, YK. et al. DNA origami-templated assembly of plasmonic nanostructures with enhanced Raman scattering. NUCL SCI TECH 29, 6 (2018). https://doi.org/10.1007/s41365-017-0347-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0347-z

Keywords

Navigation