Log in

Design optimisation and an experimental assessment of soft actuator for robotic gras**

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Many robotic systems face substantial challenges when trying to grasp and manipulate objects. Thought of initially as humanoid automata a century ago, this viewpoint is still influential in modern robot design. Many robotic grippers are inspired by the deftness of the human hand. The perceptual, processing, and control issues that conventional grippers have are also experienced by soft-fingered grippers. Precise finger placement, dictated by the shape and attitude of the object, is necessary to accomplish force closure when using soft fingertips to grasp. Soft robotic end-effectors have several advantages, such as a good interface with humans, the capacity to adapt to different environments, a number of degrees of freedom, and the ability to non-destructively grasp items of various shapes. Adding to earlier research that looked at the soft robot in a theoretical way, this study creates an optimized model based on the deformation in terms of bending of the channel cavity under applied pneumatic pressure. A correlation between pneumatic pressure and the pneumatic soft actuator's bending angle has been demonstrated. This research looks at how different design factors affect the bending of a multi-chambered soft actuator that is pneumatically networked. The finite element approach involves fine-tuned (optimised) actuator construction. Using FEM to evaluate aspects affecting actuator mechanical output, the ideal design parameters were discovered using DoE, resulting in a bending angle of ~ 104 degrees at 30 kPa. This study used ANOVA at a 5% significant level to identify which variables most affected the pneumatic actuator's deformation (bending angle). The significant R-square value of 96.42% supports the study's conclusions that the parameters utilised explain an immense percentage of bending angle deviations. Experimental verification of the optimized finite element model findings was conducted. The verification of the actuators' bending angles and output forces reveals that the discrepancy between the two sets of data stayed below 9%. Also, the average grip** success rate attained in the gras** evaluation, which involved four distinct types of items, was almost 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21.
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Code availability (software application or custom code)

Not Applicable.

References

  • Alici, G., Canty, T., Mutlu, R., Hu, W.P., Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robot. 5, 24–35 (2018)

    Article  Google Scholar 

  • Bader, F., Rahimifard, S.: A methodology for the selection of industrial robots in food handling. Innov. Food Sci. Emerg. Technol. 64, 102379 (2020)

    Article  Google Scholar 

  • Bhat, A., Yeow, R.C.H.: Utilizing sacrificial molding for embedding motion controlling endostructures in soft pneumatic actuators. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2020

  • Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107(44), 18809–18814 (2010)

    Article  Google Scholar 

  • Cao, Yu., Huang, J., Ding, G., Wang, Y.: Design of nonlinear predictive control for pneumatic muscle actuator based on echo state Gaussian process. IFAC-PapersOnLine 50(1), 1952–1957 (2017)

    Article  Google Scholar 

  • Chavoshian, M., Taghizadeh, M., Mazare, M.: Hybrid dynamic neural network and PID control of pneumatic artificial muscle using the PSO algorithm. Int. J. Autom. Comput. 17(3), 428–438 (2020)

    Article  Google Scholar 

  • Dang, H.M., Chi, T.V., Viet, D.N., Hai, N.N., Anh, V.T., Van, B.P.: A method for determining parameters of hyperelastic materials and its application in simulation of pneumatic soft actuator. Int. J. Comput. Mater. Sci. Eng. 10(3), 2150017 (2021)

    Google Scholar 

  • De Payrebrune, K.M., Oliver, M.O.: On constitutive relations for a rod-based model of a pneu-net bending actuator. Ext. Mech. Lett. 8, 38–46 (2016)

    Article  Google Scholar 

  • Durakovic, B.: Design of experiments application, concepts, examples: state of the art. Period. Eng. Nat. Sci. 5(3) (2017).

  • Giffney, T., **e, M., Yong, A., Wong, A., Mousset, P., McDaid, A., Aw, K.: Soft pneumatic bending actuator with integrated carbon nanotube displacement sensor. Robotics 5(1), 7 (2016)

    Article  Google Scholar 

  • Hao, Y., Zheyuan, G., Zhexin, X., Shaoya, G., **, Wu.: Voltage-driven nonuniform axisymmetric torsion of a tubular dielectric elastomer actuator reinforced with one family of inextensible fibers. Eur. J. Mech. A/Solids 71, 386–393 (2018)

    Article  MathSciNet  Google Scholar 

  • Hines, L., Kirstin, P., Guo, Z.L., Metin, S.: Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)

    Article  Google Scholar 

  • Hu, W., Rahim, M., Weihua, L., Gursel, A.: A structural optimisation method for a soft pneumatic actuator. Robotics 7(2), 24 (2018)

    Article  Google Scholar 

  • Hwang, Y., Paydar, O.H., Candler, R.N.: Pneumatic microfinger with balloon fins for linear motion using 3D printed molds. Sens. Actuat. A 234, 65–71 (2015)

    Article  Google Scholar 

  • Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  • Jiang, H., **, C.: Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, pp. 350–356 (2016)

  • Jiang, Y., Diansheng, C., Jiacheng, Q., Zhe, L., Ziqi, W., Ying, X.: Soft robotic glove for hand rehabilitation based on a novel fabrication method. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 817–822. IEEE (2017)

  • Jiang, Q., Fengyu, Xu.: Design and motion analysis of adjustable pneumatic soft manipulator for gras** objects. IEEE Access 8, 191920–191929 (2020)

    Article  Google Scholar 

  • Lalegani, D., Mohammadreza, R.S., Ali, Z., Hamed, Y.N., Mahdi, B.” Soft pneumatic actuators with integrated resistive sensors enabled by multi-material 3D printing. Int. J. Adv. Manufact. Technol., 1–15 (2023)

  • Lei, J., Ge, Z., Fan, P., Zou, W., Jiang, T., Dong, L.: Design and manufacture of a flexible pneumatic soft gripper. Appl. Sci. 12(13), 6306 (2022)

    Article  Google Scholar 

  • Li, H., Yao, J., Zhou, P., Chen, X., Yundou, Xu., Zhao, Y.: High-load soft grippers based on bionic winding effect. Soft Rob. 6(2), 276–288 (2019)

    Article  Google Scholar 

  • Liu, Z., Wang, F., Liu, S., Tian, Y., Zhang, D.: Modeling and analysis of soft pneumatic network bending actuators. IEEE/ASME Trans. Mechatron. 26(4), 2195–2203 (2020)

    Article  Google Scholar 

  • Ma, K., Jiang, Z., Gao, S., Cao, X., Fengyu, Xu.: Design and analysis of fiber-reinforced soft actuators for wearable hand rehabilitation device. IEEE Robot. Automat. Lett. 7(3), 6115–6122 (2022)

    Article  Google Scholar 

  • Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective gras**. Soft Rob. 2(3), 107–116 (2015)

    Article  Google Scholar 

  • Marechal, L., Balland, P., Lindenroth, L., Petrou, F., Kontovounisios, C., Bello, F.: Toward a common framework and database of materials for soft robotics. Soft Robot. 8, 284–297 (2021a)

    Article  Google Scholar 

  • Marechal, L., Balland, P., Lindenroth, L., Petrou, F., Kontovounisios, C., Bello, F.: Toward a common framework and database of materials for soft robotics. Soft Rob. 8(3), 284–297 (2021b)

    Article  Google Scholar 

  • Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Func. Mater. 24(15), 2163–2170 (2014a)

    Article  Google Scholar 

  • Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014b)

    Article  Google Scholar 

  • Paoletti, P., Jones, G.W., Lakshminarayanan, M.: Gras** with a soft glove: Intrinsic impedance control in pneumatic actuators. J. R. Soc. Interface 14(128), 20160867 (2017)

    Article  Google Scholar 

  • Polygerinos, P., Zheng, W., Johannes, T.B.O., Kevin, C.G., Robert, J.W., Katia, B., Conor, J.W.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)

    Article  Google Scholar 

  • Polygerinos, P., Correll, N., Morin, S.A., Mosadegh, B., Onal, C.D., Petersen, K., Cianchetti, M., Tolley, M.T., Shepherd, R.F.: Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19(12), 1700016 (2017)

    Article  Google Scholar 

  • Putra, K.B., Tian, X., Plott, J., Shih, A.: Biaxial test and hyperelastic material models of silicone elastomer fabricated by extrusion-based additive manufacturing for wearable biomedical devices. J. Mech. Behav. Biomed. Mater. 107, 103733 (2020)

    Article  Google Scholar 

  • Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018)

    Article  Google Scholar 

  • Sithiwichankit, C., Chanchareon, R.: Adaptive pincer gras** of soft pneumatic grippers based on object stiffness for modellable and controllable gras** quality. Robotics 11(6), 132 (2022)

    Article  Google Scholar 

  • Stano, G., Arleo, L., Percoco, G.: Additive manufacturing for soft robotics: design and fabrication of airtight, monolithic bending PneuNets with embedded air connectors. Micromachines 11(5), 485 (2020)

    Article  Google Scholar 

  • Sun, Z.-S., Guo, Z.-H., Tang, W.: Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator. J. Central South Univ. 26(1), 106–119 (2019)

    Article  Google Scholar 

  • Tai, K., El-Sayed, A.-R., Shahriari, M., Biglarbegian, M., Mahmud, S.: State of the art robotic grippers and applications. Robotics 5(2), 11 (2016)

    Article  Google Scholar 

  • Tho, T.P., Nguyen, T.T.: Design and development of the sorting system based on robot. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS), IEEE, pp. 1639–1644 (2015)

  • Wakimoto, S., Suzumori, K., Ogura, K.: Miniature pneumatic curling rubber actuator generating bidirectional motion with one air-supply tube. Adv. Robot. 25(9–10), 1311–1330 (2011)

    Article  Google Scholar 

  • Wang, Z., Hirai, S.: Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method. IEEE Robot. Autom. Lett. 2(2), 624–631 (2017)

    Article  Google Scholar 

  • Wang, X., Wu, P., Feng, Q., Wang, G.: Design and test of tomatoes harvesting robot. J. Agric. Mech. Res. 38(4), 94–98 (2016a)

    Google Scholar 

  • Wang, Z., Panagiotis, P., Johannes, T.B.O., Kevin, C.G., Katia, B., Conor, J.W.: Interaction forces of soft fiber reinforced bending actuators. IEEE/ASME Trans. Mech. 22(2), 717–727 (2016b)

    Article  Google Scholar 

  • Wang, S., Yuan L., Yue S., **aobin L., Ning S., Xuebo Z., Ningbo Y.: A localization and navigation method with ORB-SLAM for indoor service mobile robots. In: 2016 IEEE international conference on real-time computing and robotics (RCAR). IEEE, pp. 443–447 (2016c)

  • Wang, J., Fei, Y., Pang, Wu.: Design, modeling, and testing of a soft pneumatic glove with segmented pneunets bending actuators. IEEE/ASME Trans. Mechatron. 24(3), 990–1001 (2019)

    Article  Google Scholar 

  • Wang, X., Kang, H., Zhou, H., Au, W., Wang, M.Y., Chen, C.: Development and evaluation of a robust soft robotic gripper for apple harvesting. Comput. Electron. Agric. 204, 107552 (2023)

    Article  Google Scholar 

  • Xavier, M.S., Fleming, A.J., Yong, Y.K.: Finite element modeling of soft fluidic actuators: overview and recent developments. Adv. Intell. Syst. 3(2), 2000187 (2021)

    Article  Google Scholar 

  • Yang, F., Ruan, Qi., Man, Y., **e, Z., Yue, H., Li, B., Liu, R.: Design and optimize of a novel segmented soft pneumatic actuator. IEEE Access 8, 122304–122313 (2020)

    Article  Google Scholar 

  • Yarali, E., Noroozi, R., Moallemi, A., Taheri, A., Baghani, M.: Develo** an analytical solution for a thermally tunable soft actuator under finite bending. Mech. Based Des. Struct. Mach. 50(5), 1793–1807 (2022)

    Article  Google Scholar 

  • Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)

    Article  Google Scholar 

  • Yu, M., Liu, W., Zhao, J., Hou, Y., Hong, X., Zhang, H.: Modeling and analysis of a composite structure-based soft pneumatic actuators for soft-robotic gripper. Sensors 22(13), 4851 (2022)

    Article  Google Scholar 

  • Zhou, J., Chen, S., Wang, Z.: A soft-robotic gripper with enhanced object adaptation and gras** reliability. IEEE Robot. Automat. Lett. 2(4), 2287–2293 (2017)

    Article  Google Scholar 

  • Zolfagharian, A., Lakhi, M., Ranjbar, S., Sayah Irani, M., Nafea, M., Bodaghi, M.: 4D printing parameters optimisation for bi-stable soft robotic gripper design. J. Braz. Soc. Mech. Sci. Eng. 45(4), 224 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Robotics lab of Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu, India, for providing Robot facilities and necessary support.

Funding

It is certified on behalf of corresponding author (Prabhu Sethuramalingam) that present research is not funded by any external agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of soft gripper. Taguchi L9 orthogonal FEA analysis were performed by [Mr. Dhruba Jyoti Sut] and Taguchi Optimization were performed by [Prof. Prabhu Sethuramalingam]. The first draft of the manuscript was written and verified by [Mr. Dhruba Jyoti Sut and Prof. Prabhu Sethuramalingam]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prabhu Sethuramalingam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Replication of results

No results are presented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sut, D.J., Sethuramalingam, P. Design optimisation and an experimental assessment of soft actuator for robotic gras**. Int J Intell Robot Appl (2024). https://doi.org/10.1007/s41315-024-00355-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41315-024-00355-w

Keywords

Navigation