Log in

Future adoption and consumption of green and sustainable nanoproducts—classifications and synthesis

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Nanotechnology has paved the path into our daily lives in the form of consumer products, ranging from food products to the textile we wear. With this huge inflow of nanoproducts, research has been able to draw conclusions that these products are environment friendly and sustainable for our planet. This particular chapter will bring out the intrinsic arenas, where the usage of nanotechnology and its products has led to a green future and eco-friendly living. There are numerous nanoproducts which are a remedy to the existing scenario of pollution and miseries of human. To add to it, nanotechnology has been of importance to revamp clean energy movement and bring about various techniques to limit the pollution. The basis of green nanoproducts is to make earth less hazardous and less toxic planet to live in. We have put up various intriguing case studies and contemporary research on nanotechnology that is of great importance in the view of sustainability and green future. The upcoming times are waiting for better improvised techniques to deal with existing dreadful pollution and the deadly climate change. Nanotechnology and the products built through nanoscience will play a crucial role in mitigating the issues of our blue planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All relevant data and material are presented in the main paper.

References

  1. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):1–10

    Article  Google Scholar 

  2. Abbasi E, Sedigheh Fekri A, Abolfazl A, Morteza M, Hamid Tayefi N, Younes H, Kazem N-K, Roghiyeh P-A (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):247–255

    Article  Google Scholar 

  3. Adadurov GA, Baluev AV, Breusov ON, Drobyshev VN, Rogacheva AI, Sapegin AM, Tatsii VF (1977) Some properties of diamonds produced by an explosive method. Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 13(4):649–653

    Google Scholar 

  4. Adithya GT, Rangabhashiyam S, Sivasankari C (2019) Lanthanum-iron binary oxide nanoparticles: as cost-effective fluoride adsorbent and oxygen gas sensor. Microchem J 148:364–373. https://doi.org/10.1016/j.microc.2019.05.003

    Article  Google Scholar 

  5. Ajayan PM, Zhou OZ (2020) Mechanical applications of carbon nanotubes. Carbon Nanotub Appl 425:519–521. https://doi.org/10.1201/b11989-34

    Article  Google Scholar 

  6. Arai Y, Inoue R, Goto K, Kogo Y (2019) Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review. Ceram Int 45(12):14481–14489. https://doi.org/10.1016/j.ceramint.2019.05.065

    Article  Google Scholar 

  7. Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: End of life assessment. J Nanoparticle Res 14(3):1–8. https://doi.org/10.1007/s11051-012-0720-0

    Article  Google Scholar 

  8. Bai RG, Sabouni R, Husseini G (2018) Green nanotechnology-A road map to safer nanomaterials. Advances and Key Technologies. Elsevier Ltd., In Applications of Nanomaterials. https://doi.org/10.1016/B978-0-08-101971-9.00006-5

    Book  Google Scholar 

  9. Barman SR, Nain A, Jain S, Punjabi N, Mukherji S, Satija J (2018) Dendrimer as a multifunctional cap** agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J Mater Chem B 6(16):2368–2384. https://doi.org/10.1039/c7tb03344c

    Article  Google Scholar 

  10. Behrens S (2011) Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3(3):877–892. https://doi.org/10.1039/C0NR00634C.PMID21165500

    Article  Google Scholar 

  11. Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96. https://doi.org/10.1016/j.copbio.2016.02.005.PMID26938504

    Article  Google Scholar 

  12. Bernholc J, Roland C, Yakobson BI (1997) Nanotubes. Curr Opinion Solid State Mater Sci 2(6):706–715

    Article  Google Scholar 

  13. Brandt NB, Chudinov SM, Ponomarev YG (eds) (1988) Semimetals Graphite and Its Compounds; Modern Problem in Condensed Matter Sciences Series 20. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  14. Cha C, Shin SR, Annabi N, Dokmeci MR (2013) Carbon-based nanomaterials : multifunctional materials for. ACS Nano 7(4):2891–2897

    Article  Google Scholar 

  15. Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym Mater 30(12):5180–5192. https://doi.org/10.1007/s10904-020-01674-8

    Article  Google Scholar 

  16. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12. https://doi.org/10.1016/j.toxlet.2007.10.004

    Article  Google Scholar 

  17. Chen Y, Zhang Y, Hu Y, Kang L, Zhang S, **e H, Liu D, Zhao Q, Li Q, Zhang J (2014) State of the art of single-walled carbon nanotube synthesis on surfaces. Adv Mater 26:5898

    Article  Google Scholar 

  18. Cinelli M, Coles SR, Sadik O, Karn B, Kirwan K (2016) A framework of criteria for the sustainability assessment of nanoproducts. J Clean Prod 126:277–287. https://doi.org/10.1016/j.jclepro.2016.02.118

    Article  Google Scholar 

  19. Coroş M, Pogăcean F, Măgeruşan L, Socaci C, Pruneanu S (2019) A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front Mater Sci 13(1):23–32. https://doi.org/10.1007/s11706-019-0452-5

    Article  Google Scholar 

  20. Deprez N, McLachlan DS (1988) The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. J Phys D Appl Phys 21:101–107

    Article  Google Scholar 

  21. Devatha CP, Thalla AK, Katte SY (2016) Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Cleaner Prod 139:1425–1435. https://doi.org/10.1016/j.jclepro.2016.09.019

  22. Ding JH, Zhao HR, Yu HB (2018) A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci Rep 8(1):5567

    Article  Google Scholar 

  23. Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Usp Khim 70:687–708

    Article  Google Scholar 

  24. Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35(2):141–167. https://doi.org/10.1016/j.pecs.2008.09.001

    Article  Google Scholar 

  25. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Delivery Rev 57(15):2215–2237. https://doi.org/10.1016/J.ADDR.2005.09.019

  26. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):1–13. https://doi.org/10.1186/1556-276X-9-393

    Article  Google Scholar 

  27. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222

    Article  Google Scholar 

  28. Egirani DE, Shehata N, Khedr MH (2020) A review of nano materials in agriculture and allied sectors: preparation, characterization, applications, opportunities, and challenges. Mater Int. https://doi.org/10.33263/Materials23.421432

    Article  Google Scholar 

  29. Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M (2021) Application of dendrimers for treating parasitic diseases. Pharmaceutics 13(3):1–22. https://doi.org/10.3390/pharmaceutics13030343

  30. Foss Hansen S, Heggelund LR, Revilla Besora P, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts: what is actually available to European consumers? Environ Sci Nano 3(1):169–180. https://doi.org/10.1039/c5en00182j

    Article  Google Scholar 

  31. Froehling PE (2001) “Dendrimers and dyes”. Dyes Pigments 48(3):187–195

  32. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453. https://doi.org/10.1002/bit.25160

    Article  Google Scholar 

  33. Garavand F, Rahaee S, Vahedikia N, Jafari SM (2019) Different techniques forextraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 89:26–44

    Article  Google Scholar 

  34. Garshin AP, Kulik VI, Matveev SA, Nilov AS (2017) Contemporary technology for preparing fiber-reinforced composite materials with a ceramic refractory matrix (review). Refract Ind Ceram 58(2):148–161. https://doi.org/10.1007/s11148-017-0073-4

    Article  Google Scholar 

  35. Gliga AR, Skoglund S, Wallinder IO et al (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11. https://doi.org/10.1186/1743-8977-11-11

    Article  Google Scholar 

  36. Grayson SM, Fréchet JMJ (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101(12):3819–3867. https://doi.org/10.1021/cr990116h

    Article  Google Scholar 

  37. Hadi A, Zahirifar J, Karimi-Sabet J et al (2018) Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: the coupled effect of ultrasound and wedging nanoparticles. Ultrason Sonochem 44:204–214

    Article  Google Scholar 

  38. He ZB, Maurice JL, Lee CS, Cojocaru CS, Pribat D (2010) Nickel catalyst faceting in plasma-enhanced direct current chemical vapor deposition of carbon nanofibers. Arab J Sci Eng 35(1C):11–19

    Google Scholar 

  39. Hocke F, Zhou X, Schliesser A, Kippenberg TJ, Huebl H, Gross R (2012) Electromechanically induced absorption in a circuit nano-electromechanical system. New J Phys 14. https://doi.org/10.1088/1367-2630/14/12/123037

  40. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  41. Iijima S, Ajayan PM, Ichihashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69(21):3100

    Article  Google Scholar 

  42. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650. https://doi.org/10.1039/c1gc15386b

    Article  Google Scholar 

  43. Jeyasubramanian K, Benitha VS, Parkavi V (2019) Nano iron oxide dispersed alkyd coating as an efficient anticorrosive coating for industrial structures. Prog Org Coat 132:76–85. https://doi.org/10.1016/j.porgcoat.2019.03.023

  44. Jia X, Wei F (2017) Advances in production and applications of carbon nanotubes. Top Curr Chem 375(1):299–333. https://doi.org/10.1007/s41061-017-0102-2

    Article  Google Scholar 

  45. Jitendra K. Pandey, Antonio N. Nakagaito, Hitoshi Takagi, Fabrication and applications of cellulose nanoparticle-based polymer composites, advanced material division, institute of technology and science, the university of Tokushima,Tokushima 770–8506, Japan.

  46. Jose-Yacaman M, Miki-Yoshida M, Rendon L, Santiesteban JG (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62(2):202–204

    Article  Google Scholar 

  47. Journet C, Maser WK, Bernier P, Loiseau A, De La Chapelle ML, Lefrant D, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758

    Article  Google Scholar 

  48. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Progress in Polm Sci 39(2):268–307. https://doi.org/10.1016/j.progpolymsci.2013.07.005

  49. Khan, M. B., and Khan, Z. H. (n.d.). Nanodiamonds : Synthesis and applications.

  50. Kickelbick, G., (2007). Hybrid materials: synthesis, characterization, and applications: Wiley-VCH.

  51. Koshani R, Jafari SM (2019) Ultrasound-assisted preparation of different nanocarriersloaded with food bioactive ingredients. Adv Colloid Interface Sci 270:123–146

    Article  Google Scholar 

  52. Lee SH, Kim KW, Lee BT, Bang S, Kim H, Kang H, Jang A (2015) Enhanced arsenate removal performance in aqueous solution by yttrium-based adsorbents. Int J Environ Res Public Health 12(10):13523–13541. https://doi.org/10.3390/ijerph121013523

    Article  Google Scholar 

  53. Lee CC, Mackay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nature biotechnol 23(12):1517–1526. https://doi.org/10.1038/nbt1171

    Article  Google Scholar 

  54. Li Y, Chopra N (2015) Progress in large-scale production of graphene, part 1: chemical Methods. Jom 67(1):34–43. https://doi.org/10.1007/s11837-014-1236-0

    Article  Google Scholar 

  55. Liu C, Cheng H-M (2016) Controlled growth of semiconducting and metallic single-wall carbon nanotubes. J Am Chem Soc 138:6690

    Article  Google Scholar 

  56. Liu S, Lu Y, Chen W (2018) Bridge knowledge gaps in environmental health and safety for sustainable development of nano-industries. Nano Today 23:11–15. https://doi.org/10.1016/j.nantod.2018.09.002

    Article  Google Scholar 

  57. Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G (2011) Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. J Chromatogr A 1218(11):197–204

    Article  Google Scholar 

  58. Lloyd S, Lave LB (2003) Life cycle economic and environ-mental implications of using nanocomposites in automobiles. Environ Sci-Technol 37:3458–3466

    Article  Google Scholar 

  59. Lo CC, Wang CH, Chien PY, Hung CW (2012) An empirical study of commercialization performance on nanoproducts. Technovation 32(3–4):168–178. https://doi.org/10.1016/j.technovation.2011.08.005

    Article  Google Scholar 

  60. Manjunatha CR, Nagabhushana BM, Raghu MS, Pratibha S, Dhananjaya N, Narayana A (2019) Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of direct blue 53 dye and fluoride. Mater Sci Eng C 101:674–685. https://doi.org/10.1016/j.msec.2019.04.013

    Article  Google Scholar 

  61. Martins R, Kaczerewska OB (2021) Green nanotechnology: the latest innovations, knowledge gaps, and future perspectives. Appl Sci 11(10):4–7. https://doi.org/10.3390/app11104513

    Article  Google Scholar 

  62. Matthews F, Rawlings R (2003) Composite materials. mechanics and technology Russian translation, Tekhnosfera, Moscow

    Google Scholar 

  63. Mauter MS, Elimelech M (2008) Critical review environmental applications of carbon-based nanomaterials. Am Chem Soc 42(16):5843–5859

    Google Scholar 

  64. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262. https://doi.org/10.1007/s10570-013-0007-3

    Article  Google Scholar 

  65. Michael FL, Volder De, Sameh H, Tawfick RH, Baughman A, John A, Hart (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  66. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147. https://doi.org/10.1016/j.envint.2015.01.013

    Article  Google Scholar 

  67. Mittal D, Kaur G, Singh P, Yadav K, Ali SA (2020) Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol. https://doi.org/10.3389/fnano.2020.579954

    Article  Google Scholar 

  68. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23. https://doi.org/10.1038/nnano.2011.209

    Article  Google Scholar 

  69. Mukhopadhyay, A. K. (2011). Construction products : a review. nanotechnology in civil infrastructure, Nanotechnology in civil infrastructure 207–223.

  70. Musee N (2011) Nanowastes and the environment: Potential new waste management paradigm. Environ Int 37(1):112–128. https://doi.org/10.1016/j.envint.2010.08.005

    Article  Google Scholar 

  71. Nasir S, Hussein MZ, Zainal Z, Yusof NA (2018) Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials 11(2):1–24. https://doi.org/10.3390/ma11020295

    Article  Google Scholar 

  72. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Science 306:666

    Article  Google Scholar 

  73. Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I (2001) Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv Mater 13:1320

    Article  Google Scholar 

  74. Patel HN, Patel PM (2013) Dendrimer applications: a review. Int J Pharm Bio Sci 4(2):454–463

    Google Scholar 

  75. Pierson HO (1993) Handbook of Carbon, Graphite, Diamond and Fullerenes; Noyes Publications: Park Ridge. NJ, USA

    Google Scholar 

  76. Rimal V, Shishodia S, Srivastava PK (2020) Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate. Appl Nanosci. https://doi.org/10.1007/s13204-019-01178-z

    Article  Google Scholar 

  77. Rohatgi, P. K., M, A. D., Schultz, B. F., & Ferguson, J. B. (2013). Pacific Rim International Congress on Advanced Materials and Processing. 1515–1524.

  78. Sackin P (2000) News and views. Educ Gen Pract 11(4):438–443

    Google Scholar 

  79. Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22(6):4122–4143. https://doi.org/10.1007/s11356-014-3994-1

    Article  Google Scholar 

  80. Samrot AV, Shobana N, Suresh Kumar S, Narendrakumar G (2019) Production, Optimization and Characterisation of Chitosanase of Bacillus sp. and its Applications in Nanotechnology. J Cluster Sci 30(3):607–620. https://doi.org/10.1007/s10876-019-01520-z

  81. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev 2(5):544–568. https://doi.org/10.1002/wnan.103

    Article  Google Scholar 

  82. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: Nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agri 15(2):22–44

    Google Scholar 

  83. Sugihara K, Sato H (1963) Electrical conductivity of graphite. J Phys Soc Jpn 18:332–341

    Article  Google Scholar 

  84. Tepper, et al., Inventors (2005). Nanosize electropositive fibrous adsorbent. US Patent No.6,838,005 B2.

  85. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG (1996) Crystalline ropes of metallic carbon nanotubes. Sci-AAAS-Wkly P Ed 273(5274):483–487

    Google Scholar 

  86. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising. Multi-Funct Mater Adv Sci 2(1–2):1–13. https://doi.org/10.1002/advs.201400010

    Article  Google Scholar 

  87. Tolfree D (2006) Commercialising Nanotechnology concepts–products–markets David Tolfree. Int J Nanomanufactur 1(1):117–133

  88. Uldrich, J., Newberry, D (2003). The next big thing is really small: how nanotechnology will change the future of your business, crown business, a division of random house Inc., New York, NY.

  89. Vanthiel M, Ree FH (1987) Properties of carbon clusters in TNT detonation products: graphite-diamond transition. J Appl Phys 62:1761

    Article  Google Scholar 

  90. Venkatesh N (2018) Metallic nanoparticle: a review. Biomed J Scientifi Tech Res 4(2):3765–3775. https://doi.org/10.26717/bjstr.2018.04.0001011

    Article  Google Scholar 

  91. Wang G, Su X (2011) The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. Analyst 136(9):1783–1798. https://doi.org/10.1039/c1an15036g

    Article  Google Scholar 

  92. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Cleaner Prod 83:413–419. https://doi.org/10.1016/j.jclepro.2014.07.006

  93. Wani, T. A., Masoodi, F. A., Baba, W. N., Ahmad, M., Rahmanian, N., & Jafari, S. M.(2019). Chapter 11—Nanoencapsulation of agrochemicals, fertilizers, and pesticides forimproved plant production. In M. Ghorbanpour, & S. H. Wani (Eds.), Advances in phytonanotechnology (pp. 279_298). Academic Press.

  94. Woodrow Wilson International Center For Scholars. A nanotechnology consumer products inventory Project on Emerging Nanotechnologies; 2008 (www.nanotechproject.org) accessed on 15 January 2009.

  95. **a T, Kovochich M, Liong M et al (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96. https://doi.org/10.1021/nn700256c

    Article  Google Scholar 

  96. Xu Z, Li Q, Gao S, Shang JK (2010) As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res 44(19):5713–5721. https://doi.org/10.1016/j.watres.2010.05.051

    Article  Google Scholar 

  97. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506):522–524

    Article  Google Scholar 

  98. Zhang BT, Zheng X, Li HF, Lin JM (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17. https://doi.org/10.1016/j.aca.2013.03.054

    Article  Google Scholar 

  99. Zhao S, Yue C, Kuzma J (2020) Consumer expectations and attitudes toward nanomaterials in foods. INC, In Handbook of Food Nanotechnology. https://doi.org/10.1016/b978-0-12-815866-1.00017-0

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Chemical Engineering, Pandit Deendayal Energy University, for the permission to publish this research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors make a substantial contribution to this manuscript. DS, RB and MS participated in drafting the manuscript. DS, RB and MS wrote the main manuscript; all the authors discussed the results and implication on the manuscript at all stages.

Corresponding author

Correspondence to Manan Shah.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, D., Bhavsar, R. & Shah, M. Future adoption and consumption of green and sustainable nanoproducts—classifications and synthesis. Nanotechnol. Environ. Eng. 8, 1–14 (2023). https://doi.org/10.1007/s41204-022-00293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00293-7

Keywords

Navigation