Log in

Preparation of Alumina Powder-Reinforced High-Strength Salt Cores Produced via 3D Direct Printing for Aluminum Alloy Casting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this paper, the high-strength water-soluble Na2SO4–NaCl composite salt cores (NNCSC) strengthened by alumina powder using additive manufacturing 3D direct printing (3DP) method were reported, which can be used to manufacture the aluminum alloy castings with hollow-composite structures. The effects of polyvinyl pyrrolidone (PVP) concentration, alumina powder content, and sintering time on the performance of NNCSC were investigated. The microstructure and strengthening mechanism were analyzed and discussed. It was found that NNCSC green body exhibited good formability and bending strength at a PVP concentration of 10 wt%. When the alumina content was 40 wt% and sintered at 628 °C for 20 min, NNCSC possessed excellent comprehensive performance, and the bending strength, open porosity, sintering shrinkage, and water solubility rate were 53.09 MPa, 1.45%, 9.64% and 104.35 g/(min·m2), respectively, wherein the bending strength was increased by 215.6%. Microscopic analysis results showed that the NaCl phase in NNCSC samples was refined with the increase of alumina content, and the phase constitution altered as sintering time increased, resulting in a considerable improvement in the strength properties. Finally, the NNCSC components with slender-complex structures and corresponding aluminum alloy castings were obtained under the optimized process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. F. Czerwinski, M. Mir, W. Kasprzak, Application of cores and binders in metalcasting. Int. J. Cast. Metal. Res. 28, 129–139 (2015). https://doi.org/10.1179/1743133614y.0000000140

    Article  CAS  Google Scholar 

  2. X. Dong, H. Yang, X. Zhu, S. Ji, High strength and ductility aluminium alloy processed by high pressure die casting. J. Alloy. Compd. 773, 86–96 (2019). https://doi.org/10.1016/j.jallcom.2018.09.260

    Article  CAS  Google Scholar 

  3. Z.Q. Hu, Injection parameters optimization and artificial aging of automotive die cast aluminum alloy. Mater. Manuf. Process. 31, 787–793 (2016). https://doi.org/10.1080/10426914.2015.1004706

    Article  CAS  Google Scholar 

  4. S. Tu, F.C. Liu, G.J. Li, W.M. Jiang, X.W. Liu, Z.T. Fan, Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings. Int. J. Adv. Manuf. Tech. 95, 505–512 (2018). https://doi.org/10.1007/s00170-017-1208-y

    Article  Google Scholar 

  5. G.H. Cho, J. Li, E.H. Kim, Y.G. Jung, Preparation of a ceramic core with high strength using an inorganic precursor and the gel-casting method. Surf. Coat. Tech. 284, 396–399 (2015). https://doi.org/10.1016/j.surfcoat.2015.09.062

    Article  CAS  Google Scholar 

  6. B.J. Stauder, H. Kerber, P. Schumacher, Foundry sand core property assessment by 3-point bending test evaluation. J. Mater. Process. Tech. 237, 188–196 (2016). https://doi.org/10.1016/j.jmatprotec.2016.06.010

    Article  Google Scholar 

  7. L. Yang, S.Y. Tang, G.J. Li, F.C. Liu, X.W. Liu, W.M. Jiang, Z.T. Fan, Performance characteristics of collapsible CaO–SiO2 based ceramic core material via layered extrusion forming. Ceram. Int. 45, 7681–7689 (2019). https://doi.org/10.1016/j.ceramint.2019.01.068

    Article  CAS  Google Scholar 

  8. F.C. Liu, S. Tu, X.L. Gong, G.J. Li, W.M. Jiang, X.W. Liu, Z.T. Fan, Comparative study on performance and microstructure of composite water-soluble salt core material for manufacturing hollow zinc alloy castings. Mater. Chem. Phys. 252, 123257 (2020). https://doi.org/10.1016/j.matchemphys.2020.123257

    Article  CAS  Google Scholar 

  9. F.C. Liu, P. Jiang, Y. Huang, W.M. Jiang, X.W. Liu, Z.T. Fan, A water-soluble magnesium sulfate bonded sand core material for manufacturing hollow composite castings. Compos. Struct. 201, 553–560 (2018). https://doi.org/10.1016/j.compstruct.2018.06.084

    Article  Google Scholar 

  10. W.G. Jiang, J.S. Dong, L.H. Lou, M. Liu, Z.Q. Hu, Preparation and properties of a novel water soluble core material. J. Mater. Sci. Technol. 26, 270–275 (2010). https://doi.org/10.1016/s1005-0302(10)60045-x

    Article  CAS  Google Scholar 

  11. C. Cantas, B. Baksan, Effects of composition on the physical properties of water-soluble salt cores. Int. J. Metalcast. 15, 839–851 (2021). https://doi.org/10.1007/s40962-020-00511-5

    Article  CAS  Google Scholar 

  12. X. Gong, W. Jiang, F. Liu, Z. Yang, F. Guan, Z. Fan, Effects of glass fiber size and content on microstructures and properties of KNO3-based water-soluble salt core for high pressure die casting. Int. J. Metalcast. 15, 520–529 (2021). https://doi.org/10.1007/s40962-020-00480-9

    Article  CAS  Google Scholar 

  13. R.H. Huang, B.P. Zhang, Study on the composition and properties of salt cores for zinc alloy die casting. Int. J. Metalcast. 11, 440–447 (2017). https://doi.org/10.1007/s40962-016-0086-7

    Article  Google Scholar 

  14. K. Oikawa, K. Sakakibara, Y. Yamada, K. Anzai, High-temperature mechanical properties of NaCl–Na2CO3 salt-mixture removable cores for aluminum die-casting. Mater. Trans. 60, 19–24 (2019). https://doi.org/10.2320/matertrans.MG201804

    Article  CAS  Google Scholar 

  15. E. Adamkova, P. Jelinek, J. Beno, F. Mikgovsky, water-soluble cores-verifing development trends. Mater. Technol. 49, 61–67 (2015)

    Google Scholar 

  16. Z. **ao, L.T. Harper, A.R. Kennedy, N.A. Warrior, A water-soluble core material for manufacturing hollow composite sections. Compos. Struct. 182, 380–390 (2017). https://doi.org/10.1016/j.compstruct.2017.09.058

    Article  Google Scholar 

  17. N. Kleger, M. Cihova, K. Masania, A.R. Studart, J.F. Loffler, 3D printing of salt as a template for magnesium with structured porosity. Adv. Mater. 31, 1903783 (2019). https://doi.org/10.1002/adma.201903783

    Article  CAS  Google Scholar 

  18. J. Yaokawa, D. Miura, K. Anzai, Y. Yamada, H. Yoshi, Strength of salt core composed of alkali carbonate and alkali chloride mixtures made by casting technique. Mater. Trans. 48, 1034–1041 (2007). https://doi.org/10.2320/matertrans.48.1034

    Article  CAS  Google Scholar 

  19. X.Y. Liu, W.H. Liu, X.T. Wang, L. Song, F.H. **n, Y.M. Li, Composition optimization and strengthening mechanism of high-strength composite water-soluble salt core for foundry. Int. J. Metalcast. 16, 1809–1816 (2022). https://doi.org/10.1007/s40962-021-00725-1

    Article  CAS  Google Scholar 

  20. X.L. Gong, X.J. **ao, X.W. Liu, Z.T. Fan, Fabrication of high-strength salt cores for manufacturing hollow aluminum alloy die castings. Mater. Manuf. Process. 38, 188–196 (2023). https://doi.org/10.1080/10426914.2022.2072887

    Article  CAS  Google Scholar 

  21. A. Nommeots-Nomm, P.D. Lee, J.R. Jones, Direct ink writing of highly bioactive glasses. J. Eur. Ceram. Soc. 38, 837–844 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.08.006

    Article  CAS  Google Scholar 

  22. W.J. Costakis, L.M. Rueschhoff, A.I. Diaz-Cano, J.P. Youngblood, R.W. Trice, Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J. Eur. Ceram. Soc. 36, 3249–3256 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.002

    Article  CAS  Google Scholar 

  23. Q. Fu, E. Saiz, A.P. Tomsia, Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 7, 3547–3554 (2011). https://doi.org/10.1016/j.actbio.2011.06.030

    Article  CAS  Google Scholar 

  24. X.L. Gong, X.W. Liu, Z. Chen, Z.Y. Yang, W.M. Jiang, Z.T. Fan, 3D printing of high-strength water-soluble salt cores via material extrusion. Int. J. Adv. Manuf. 118, 2993–3003 (2022). https://doi.org/10.1007/s00170-021-08131-x

    Article  Google Scholar 

  25. Z. Chen, S. Fan, L. Peng, Y. Wang, X. Gong, X. Liu, Z. Fan, Fabrication and characterization of high-strength water-soluble composite salt cores via layered extrusion forming. Int. J. Adv. Manuf. 17, 988–997 (2023). https://doi.org/10.1007/s40962-022-00816-7

    Article  CAS  Google Scholar 

  26. H. Shao, D. Zhao, T. Lin, J. He, J. Wu, 3D gel-printing of zirconia ceramic parts. Ceram. Int. 43, 13938–13942 (2017). https://doi.org/10.1016/j.ceramint.2017.07.124

    Article  CAS  Google Scholar 

  27. S. Tang, Z. Fan, H. Zhao, L. Yang, F. Liu, X. Liu, Layered extrusion forming—A simple and green method for additive manufacturing ceramic core. Int. J. Adv. Manuf. Tech. 96, 3809–3819 (2018). https://doi.org/10.1007/s00170-018-1712-8

    Article  Google Scholar 

  28. F.J. Martínez-Vázquez, A. Pajares, P. Miranda, A simple graphite-based support material for robocasting of ceramic parts. J. Eur. Ceram. Soc. 38, 2247–2250 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.016

    Article  CAS  Google Scholar 

  29. G.V. Franks, C. Tallon, A.R. Studart, M.L. Sesso, S. Leo, Colloidal processing: enabling complex shaped ceramics with unique multiscale structures. J. Am. Ceram. Soc. 100, 458–490 (2017). https://doi.org/10.1111/jace.14705

    Article  CAS  Google Scholar 

  30. H.J. Zhang, S.L. Sun, H.J. Liu, Z. Zhu, Y.L. Wang, Characteristic and mechanism of nugget performance evolution with rotation speed for high-rotation-speed friction stir welded 6061 aluminum alloy. J. Manuf. Process. 60, 544–552 (2020). https://doi.org/10.1016/j.jmapro.2020.10.081

    Article  Google Scholar 

  31. P. Emadi, B. Andilab, C. Ravindran, Processing and properties of magnesium-based composites reinforced with low levels of Al2O3. Int. J. Metalcast. 16, 1680–1692 (2022). https://doi.org/10.1007/s40962-021-00738-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52205361 and 52275334); and the Project was funded by China Postdoctoral Science Foundation (No. 2022M721229).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aolong Gong or Zitian Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, X., Gong, X., Zhao, J. et al. Preparation of Alumina Powder-Reinforced High-Strength Salt Cores Produced via 3D Direct Printing for Aluminum Alloy Casting. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01168-6

Keywords

Navigation