Log in

Time Factor in External Radiotherapy: Radiobiological Mechanisms and Clinical Applications

  • Review article
  • Published:
Indian Journal of Gynecologic Oncology Aims and scope Submit manuscript

Abstract

This review article explores the critical role of time in external radiotherapy, focusing on the concepts of fractionation and spreading. It traces the evolution of radiobiology, highlighting key milestones that have shaped current treatment strategies. The article delves into the four fundamental principles of radiobiology—Repair, Redistribution, Reoxygenation, and Repopulation—and their implications for fractionated radiation therapy. It further discusses the clinical applications of these principles, including hyperfractionated, accelerated, and hypofractionated treatments. This review provides a comprehensive understanding of how the time factor influences the effectiveness of radiotherapy and its impact on healthy and tumor tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thames HD, Bentzen SM, Turesson I, Overgaard M, Van den Bogaert W. Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol. 1990;19(3):219–35.

    Article  CAS  PubMed  Google Scholar 

  2. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94.

    Article  CAS  PubMed  Google Scholar 

  3. Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56(6):1045–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bentzen SM, TuckerS L. Quantifying the position and steepness of radiation dose-response curves. Int J Radiat Biol. 1997;71(5):531–42.

    Article  CAS  PubMed  Google Scholar 

  5. Röntgen WC. On a new kind of rays. Science. 1896;3(59):227–31.

    Article  ADS  PubMed  Google Scholar 

  6. Becquerel H. Sur les radiations émises par phosphorescence. Comptes Rendus de l’Académie des Sciences. 1896;122:420–1.

    CAS  Google Scholar 

  7. Becquerel H. Sur les radiations invisibles émises par les corps phosphorescents. Comptes Rendus de l’Académie des Sciences Paris. 1896;122:501–3.

    Google Scholar 

  8. Curie P, Curie M. Sur une substance nouvelle radioactive, contenue dans la pechblende. Comptes Rendus de l’Académie des Sciences. 1898;127:175–8.

    Google Scholar 

  9. Curie P. Action physiologique des rayons du radium. Comptes Rendus de l’Académie des Sciences. 1901;132:1285–91.

    Google Scholar 

  10. Meistrich ML, Van MariBeek MEAB. Radiation sensitivity of the human testis. Adv Radiat Biol. 1990;14:227–68.

    Article  Google Scholar 

  11. Lars R. Holsti development of clinical radiotherapy since 1896. Acta Oncol. 1995;34(8):995–1003.

    Article  Google Scholar 

  12. Strandqvist M. VORWORT. Acta Radiol. 2010;25(sup55):7–9. https://doi.org/10.3109/00016924409176886.

    Article  Google Scholar 

  13. Kajanti MJ. Magnus Strandqvist: 50th anniversary of his doctoral thesis. Acta Oncol. 1994;33(7):735–8.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen L. The statistical prognosis in radiation therapy: a study of optimal dosage in relation to physical and biologic parameters for epidermoid cancer. Am J Roentgenol Radium Ther Nucl Med. 1960;84:741–53.

    CAS  PubMed  Google Scholar 

  15. Cohen L. Biophysical models in radiation oncology. Boca Raton: CRC Press; 1983. p. 177.

    Google Scholar 

  16. Fowler JF. Review: total doses in fractionated radiotherapy–implications of new radiobiological data. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;46(2):103–20.

    Article  CAS  PubMed  Google Scholar 

  17. Fowler JF. Fractionated radiation therapy after Strandqvist. Acta Radiol Oncol. 1984;23(4):209–16.

    Article  CAS  PubMed  Google Scholar 

  18. EDose FE. Time and fractionation: a clinical hypothesis. Clin Radiol. 1969;20:1–7.

    Article  Google Scholar 

  19. Rodney WH. The four R’s of radiotherapy. Adv Radiat Biol. 1975;5:241–71.

    Article  Google Scholar 

  20. Chang DS, et al. Basic radiotherapy physics and biology. Switzerland: Springer; 2021.

    Book  Google Scholar 

  21. Elkind MM, Sutton H. X-ray damage and recovery in mammalian cells in culture. Nature. 1959;24(184):1293–5.

    Article  ADS  Google Scholar 

  22. Wambersie A, Dutreix J, Maisin J, Gueulette J. Response of digestive tract mucosa to single and fractionated irradiation. Pract Implic Radiother Bull Cancer. 1976;63(2):175–90.

    CAS  Google Scholar 

  23. Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR. Time dose and fractionation effects. In: Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR, editors. Basic radiotherapy physics and biology. Cham: Springer; 2021. p. 299–305. https://doi.org/10.1007/978-3-030-61899-5_29.

    Chapter  Google Scholar 

  24. Williams MV, Denekamp J, Fowler JF. A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys. 1985;11(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  25. van Leeuwen CM, Oei AL, Crezee J, et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018;13:96.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Withers HR. Cell cycle redistribution as a factor in multifraction irradiation. Radiology. 1975;114(1):199–202.

    Article  CAS  PubMed  Google Scholar 

  27. Chen PL, Brenner DJ, Sachs RK. Ionizing radiation damage to cells: effects of cell cycle redistribution. Math Biosci. 1995;126(2):147–70.

    Article  CAS  PubMed  Google Scholar 

  28. Lonati L, Barbieri S, et al. Radiation-induced cell cycle perturbations: a computational tool validated with flow-cytometry data. Sci Rep. 2021;11:925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kallman RF, Dorie MJ. Tumor oxygenation and reoxygenation during radiation theraphy: their importance in predicting tumor response. Int J Radiat Oncol Biol Phys. 1986;12(4):681–5.

    Article  CAS  PubMed  Google Scholar 

  30. Du Sault LA. Reoxygenation of tumors during fractionated radiotherapy. Radiology. 1969;92:626.

    Article  PubMed  Google Scholar 

  31. Sundar S, Symonds P. Reoxygenation with fractionated radiation therapy in clinical practice. Int J Radiat Oncol Biol Phys. 2021;111(4):1090–1.

    Article  PubMed  Google Scholar 

  32. Jia YANG, **-Bo YUE, **g LIU, **-Ming YU. Repopulation of tumor cells during fractionated radiotherapy and detection methods (Review). Oncol Lett. 2014;7(6):1755–60.

    Article  CAS  Google Scholar 

  33. Peters LJ, Withers HR. Applying radiobiological principles to combined modality treatment of head and neck cancer-the time factor. Int J Radit Oncol Biol Phys. 1997;39:831–6.

    Article  CAS  Google Scholar 

  34. McKelvey KJ, Hudson AL, et al. Differential effects of radiation fractionation regimens on glioblastoma. Radiat Oncol. 2022. https://doi.org/10.1186/s13014-022-01990-y.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thames HD Jr, Peters LJ, Withers HR, Fletcher GH. Accelerated fractionation vs hyperfractionation: rationales for several treatments per day. Int J Radiat Oncol Biol Phys. 1983;9(2):127–38.

    Article  PubMed  Google Scholar 

  36. Horiot JC, Le Fur R, N’Guyen T, Chenal C, Schraub S, Alfonsi S, Gardani G, Van Den Bogaert W, Danczak S, Bolla M, et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother Oncol. 1992;25(4):231–41.

    Article  CAS  PubMed  Google Scholar 

  37. Horiot JC, Bontemps P, van den Bogaert W, et al. Accelerated fractionation (AF) compared to conventional fractionation (CF) improves loco-regional control in the radiotherapy of advanced head and neck cancers: results of the EORTC 22851 randomized trial. Radiother Oncol. 1997;44(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  38. Dische, et al. A randomised multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. Radiother Oncol. 1997;44(2):123–36.

    Article  CAS  PubMed  Google Scholar 

  39. Skladowski K, Maciejewski B, et al. Randomized clinical trial on 7-day-continuous accelerated irradiation (CAIR) of head and neck cancer – report on 3-year tumour control and normal tissue toxicity. Radiother Oncol. 2000;55(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  40. Lutz ST, et al. A review of hypofractionated palliative radiotherapy. Cancer. 2007;109(8):1462–70.

    Article  PubMed  Google Scholar 

  41. Agarwal JP, et al. Hypofractionated, palliative radiotherapy for advanced head and neck cancer. Radiother Oncol. 2008;89(1):51–6.

    Article  PubMed  Google Scholar 

  42. Mathen P, Debenham BJ, et al. Hypofractionated radiation therapy for node-positive cutaneous melanoma. Int J Radiat Oncol Biol Phys. 2016;96(2):S158.

    Article  Google Scholar 

  43. Najas GF, et al. Hypofractionated radiotherapy in breast cancer: a 10-year single institution experience. Rep Pract Oncol Radiother. 2021;26(6):920–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ritter M, et al. Hypofractionation for prostate cancer. Cancer J. 2009;15(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AM and HS performed the literature review, wrote the manuscript, and approved the final version. EM, MH, MB, NZ, AB, IL, KA, ME, and KH all revised the manuscript and approved the final version.

Corresponding author

Correspondence to Abdelhak Maghous.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghous, A., Marnouche, EA., Hommadi, M. et al. Time Factor in External Radiotherapy: Radiobiological Mechanisms and Clinical Applications. Indian J Gynecol Oncolog 22, 21 (2024). https://doi.org/10.1007/s40944-023-00781-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40944-023-00781-x

Keywords

Navigation