Log in

Evaluation of Mechanical Properties of Warp-Knitted Polyester Geogrids Under Uniaxial and Biaxial Tensile Loading

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

In this paper, a triple large-scale biaxial tensile test system for geosynthetics developed by the authors was used to study the tensile mechanical properties of warp-knitted polyester (PET) geogrids. In-isolation tensile (in air) tests with various strain rates were conducted to investigate the effects of tensile modes (uniaxial and biaxial tension) on the tensile mechanical properties of warp-knitted PET geogrids. To evaluate the influences of normal stress and confined soil types (sand and gravel) on the tensile load-strain characteristics of warp-knitted PET geogrids under uniaxial and biaxial tensile loading, strain rate-controlled tensile tests in soil were also carried out. The results demonstrated that the low strain rate leads to low tensile load and secant tensile stiffness of geogrids in-isolation tensile tests. The biaxial in-isolation tensile tests mobilized a lower tensile load throughout the tensile process. The constraint of soil types and the application of normal stress increased the tensile load and secant tensile stiffness of geogrids. In general, the confined soil reduces the impact of uniaxial and biaxial tensile loading on the tensile tests. Geogrids embedded in sandy soils showed improved mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data that supports the fndings of this study are available upon request from the corresponding author.

References

  1. Sun X, Han J, Kwon J, Parsons RL, Wayne MH (2015) Radial stresses and resilient deformations of geogrid-stabilized unpaved roads under cyclic plate loading tests. Geotext Geomembr 43(5):440–449. https://doi.org/10.1016/j.geotexmem.2015.04.018

    Article  Google Scholar 

  2. Desbrousses RLE, Meguid MA, Bhat S (2023) Experimental investigation of the effects of subgrade strength and geogrid location on the cyclic response of geogrid-reinforced ballast. Int J Geosynth Ground Eng 9(6):67. https://doi.org/10.1007/s40891-023-00486-3

    Article  Google Scholar 

  3. Sundaravel V, Deviprasad BSG, Saseendran R, Dodagoudar GR (2023) Stability and serviceability assessment of reinforced earth retaining structures: a state-of-the-art and way forward. Int J Geosynth Ground Eng 9(3):30. https://doi.org/10.1007/s40891-023-00453-y

    Article  Google Scholar 

  4. Das PP, Khatri VN, Lai VQ, Keawsawasvong S (2023) Bearing capacity estimation of ring footing on layered sand with geogrid at the interface using FELA and MARS. Int J Geosynth Ground Eng 9(5):57. https://doi.org/10.1007/s40891-023-00475-6

    Article  Google Scholar 

  5. Srilatha N, Latha GM (2022) Physical and computational modelling of geosynthetic-reinforced model slopes in shaking table tests. Int J Geosynth Ground Eng 8(6):70. https://doi.org/10.1007/s40891-022-00414-x

    Article  Google Scholar 

  6. Xu P, Li T, Hatami K, Yang G, Liang X (2022) Finite element limit analysis of load-bearing performance of reinforced slopes using a non-associated flow rule. Geotext Geomembr 50(5):1020–1035. https://doi.org/10.1016/j.geotexmem.2022.07.002

    Article  Google Scholar 

  7. Palmeira EM, Milligan GWE (1989) Scale and other factors affecting the results of pull-out tests of grids buried in sand. Geotechnique 39(3):511–542. https://doi.org/10.1680/geot.1989.39.3.511

    Article  Google Scholar 

  8. Porbaha A, Goodings DJ (1996) Centrifuge modeling of geotextile-reinforced cohesive soil retaining walls. J Geotech Eng 122(10):840–848. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(840)

    Article  Google Scholar 

  9. Yoo C, Kim SB (2008) Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: full-scale load test and 3D finite element analysis. Geotext Geomembr 26(6):460–472

    Article  Google Scholar 

  10. Viswanadham BVS, König D (2009) Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements. Geotext Geomembr 27(2):77–88. https://doi.org/10.1016/j.geotexmem.2008.09.008

    Article  Google Scholar 

  11. Balakrishnan S, Viswanadham BVS (2016) Performance evaluation of geogrid reinforced soil walls with marginal backfills through centrifuge model tests. Geotext Geomembr 44(1):95–108. https://doi.org/10.1016/j.geotexmem.2015.06.002

    Article  Google Scholar 

  12. Xu H, Ren X, Chen JN, Liu CN, **a L, Liu YW (2019) Centrifuge model tests of geogrid-reinforced slope supporting a high embankment. Geosynth Int 26(6):629–640. https://doi.org/10.1680/jgein.19.00027

    Article  Google Scholar 

  13. Won MS, Kim YS (2007) Internal deformation behavior of geosynthetic-reinforced soil walls. Geotext Geomembr 25(1):10–22. https://doi.org/10.1016/j.geotexmem.2006.10.001

    Article  Google Scholar 

  14. Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 26(6):592–610. https://doi.org/10.1680/jgein.19.00041

    Article  Google Scholar 

  15. ASTM D6637 (2015) Standard test method for determining tensile properties of geogrids by the single or multi-rib tensile method. ASTM International, West Conshohocken, PA, USA

  16. McGown A, Andrawes KZ, Kabir MH (1982) Load-extension testing of geotextiles confined in soil. In: Proceedings of the 2nd international conference on geotextiles, Las Vegas, USA, vol 3, pp 793–798

  17. Kokkalis A, Papacharisis N (1989) A simple laboratory method to estimate the in-soil behaviour of geotextiles. Geotext Geomembr 8(2):147–157. https://doi.org/10.1016/0266-1144(89)90025-3

    Article  Google Scholar 

  18. Ling HI, Wu JT, Tatsuoka F (1992) Short-term strength and deformation characteristics of geotextiles under typical operational conditions. Geotext Geomembr 11(2):185–219. https://doi.org/10.1016/0266-1144(92)90043-A

    Article  Google Scholar 

  19. McGown A, Yogarajah I, Andrawes KZ, Saad MA (1995) Strain behaviour of polymeric geogrids subjected to sustained and repeated loading in air and in soil. Geosynth Int 2(1):341–355. https://doi.org/10.1680/gein.2.0014

    Article  Google Scholar 

  20. Mendes MJA, Palmeira EM, Matheus E (2007) Some factors affecting the in-soil load–strain behaviour of virgin and damaged nonwoven geotextiles. Geosynth Int 14(1):39–50. https://doi.org/10.1680/gein.2007.14.1.39

    Article  Google Scholar 

  21. Tano BFG, Stoltz G, Touze-Foltz N, Dias D, Olivier F (2017) A numerical modelling technique for geosynthetics validated on a cavity model test. Geotext Geomembr 45(4):339–349. https://doi.org/10.1016/j.geotexmem.2017.04.006

    Article  Google Scholar 

  22. Perkins SW, Haselton HN (2019) Resilient response of geosynthetics from cyclic and sustained in-air tensile loading. Geosynth Int 26(4):428–435. https://doi.org/10.1680/jgein.19.00028

    Article  Google Scholar 

  23. Ren X, Zhao X, Zheng C, Song L, Yang X, Liu Z (2021) Research on mechanical performance of industrial polypropylene biaxial geogrid. Polym Testing 99:107214. https://doi.org/10.1016/j.polymertesting.2021.107214

    Article  Google Scholar 

  24. Perkins SW, Haselton HN, Newman EC (2021) In-plane elastic properties of geosynthetics from in-air biaxial tension tests. Geosynth Int 28(3):303–315. https://doi.org/10.1680/jgein.20.00044

    Article  Google Scholar 

  25. **a X, Zhang X, Mu C (2021) A multi-camera based photogrammetric method for three-dimensional full-field displacement measurements of geosynthetics during tensile test. Geotext Geomembr 49(5):1192–1210. https://doi.org/10.1016/j.geotexmem.2021.03.012

    Article  Google Scholar 

  26. Desbrousses RLE, Meguid MA, Bhat S (2022) Effect of temperature on the mechanical properties of two polymeric geogrid materials. Geosynth Int. https://doi.org/10.1680/jgein.21.00032a

    Article  Google Scholar 

  27. Hussein MG, Meguid MA (2016) A three-dimensional finite element approach for modeling Biaxial geogrid with application to geogrid-reinforced soils. Geotext Geomembr 44(3):295–307. https://doi.org/10.1016/j.geotexmem.2015.12.004

    Article  Google Scholar 

  28. Balakrishnan S, Viswanadham BVS (2017) Evaluation of tensile load-strain characteristics of geogrids through in-soil tensile tests. Geotext Geomembr 45(1):35–44. https://doi.org/10.1016/j.geotexmem.2016.07.002

    Article  Google Scholar 

  29. Portelinha FHM, Santos MC, Futai MM (2021) A laboratory device to evaluate geosynthetic load–strain behaviour in MSE walls. Geosynth Int 28(1):32–47. https://doi.org/10.1680/jgein.20.00025

    Article  Google Scholar 

  30. McGown A, Andrawes ZK, Yeo KC, Dubois D (1984) The load–strain-time behaviour of Tensar geogrids. Polymer grid reinforcement. Thomas Telford Publishing, London, pp 11–17. https://doi.org/10.1680/pgr.02425.0004

    Book  Google Scholar 

  31. McGown A, Paine N, Dubois D, Andrews KZ, Jewell RA (1984) Use of geogrid properties in limit equilibrium analysis. Polymer grid reinforcement. Thomas Telford Publishing, London, pp 31–36. https://doi.org/10.1680/pgr.02425.0006

    Book  Google Scholar 

  32. Bathurst RJ, Cai Z (1994) In-isolation cyclic load-extension behavior of two geogrids. Geosynth Int 1(1):1–19. https://doi.org/10.1680/gein.1.0001

    Article  Google Scholar 

  33. Boyle SR, Gallagher M, Holtz RD (1996) Influence of strain rate, specimen length and confinement on measured geotextile properties. Geosynth Int 3(2):205–225. https://doi.org/10.1680/gein.3.0060

    Article  Google Scholar 

  34. Shinoda M, Bathurst RJ (2004) Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load. Geotext Geomembr 22(4):205–222. https://doi.org/10.1016/j.geotexmem.2004.03.003

    Article  Google Scholar 

  35. Mitchell JK, Zornberg JG (1995) Reinforced soil structures with poorly draining backfills part II: case histories and applications. Geosynth Int 2(1):265–307. https://doi.org/10.1680/gein.2.0011

    Article  Google Scholar 

  36. Liu CN, Ho YH, Huang JW (2009) Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext Geomembr 27(1):19–30. https://doi.org/10.1016/j.geotexmem.2008.03.002

    Article  Google Scholar 

  37. Plácido R, Portelinha FHM, Futai MM (2018) Field and laboratory time-dependent behaviors of geotextiles in reinforced soil walls. Geosynth Int 25(2):215–229. https://doi.org/10.1680/jgein.18.00003

    Article  Google Scholar 

  38. AASHTO (2009) Standard specifications for highway bridges, 7th edn. American Association of State Highway and Transportation Officials, Washington, DC

    Google Scholar 

  39. ASTM D6706 (2021) Standard test method for measuring geosynthetic pullout resistance in soil. ASTM International, West Conshohochen, PA, USA

  40. ASTM D4595 (2009) Standard test method for tensile properties of geotextiles by the wide-width strip method. American Society of Testing and Materials, West Conshohocken

    Google Scholar 

  41. Bush DI, Böhmert W (1992) Geosynthetic reinforcements subjected to bi-directional stress. An experimental study. In: International symposium on earth reinforcement practice, pp 45–50

  42. Nimmersgern M (1994) Large scale biaxial creep tests on a polypropylene geogrid. Otto Graf J 1994:137–147

    Google Scholar 

  43. Saathoff F (1999) Effects of streched geotextiles in contact with soil. In: International conference on soil mechanics and foundation engineering, pp 1781–1784

  44. En 1997-3 (2020) Eurocode 7: geotechnical design—part 3: geotechnical structures. Technical Committee CEN/TC 250 “Structural Eurocodes”

  45. Allen TM, Bathurst RJ (2014) Performance of a 11 m high block-faced geogrid wall designed using the K-stiffness Method. Can Geotech J 51(1):16–29. https://doi.org/10.1139/cgj-2013-0261

    Article  Google Scholar 

  46. Allen TM, Bathurst RJ (2014) Design and performance of a 6.3 m high block-faced geogrid wall designed using the K-stiffness Method. J Geotech Geoenviron Eng 140(2):04013016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001013

    Article  Google Scholar 

  47. Hatami K, Bathurst RJ (2006) Numerical model for reinforced soil segmental walls under surcharge loading. J Geotech Geoenviron Eng 132(6):673–684. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(673)

    Article  Google Scholar 

  48. Huang B, Bathurst RJ, Hatami K (2009) Numerical study of reinforced soil segmental walls using three different constitutive soil models. J Geotech Geoenviron Eng 135(10):1486–1498. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000092

    Article  Google Scholar 

  49. Yu Y, Bathurst RJ, Allen TM (2016) Numerical modelling of the SR-18 geogrid reinforced modular block retaining walls. J Geotech Geoenviron Eng 142(5):04016003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001438

    Article  Google Scholar 

  50. Yu Y, Bathurst RJ, Allen TM (2017) Numerical modelling of two full-scale reinforced soil wrapped-face walls. Geotext Geomembr 45(4):237–249. https://doi.org/10.1016/j.geotexmem.2017.02.004

    Article  Google Scholar 

  51. Bathurst RJ, Naftchali FM (2021) Geosynthetic reinforcement stiffness for analytical and numerical modelling of reinforced soil structures. Geotext Geomembr 49(4):921–940. https://doi.org/10.1016/j.geotexmem.2021.01.003

    Article  Google Scholar 

  52. Kupec J, McGown A (2004) The biaxial load–strain behaviour of biaxial geogrids. In: Proceedings of the 3rd Asian regional conference on geosynthetics, Seoul, Korea, vol 21

  53. McGown A, Kupec J, Heerten G, Voskamp W (2004) Current approaches to the determination of the design stiffness and strength of polymeric biaxial geogrids. Vorträge der Baugrundtagung 2004:123–130

    Google Scholar 

  54. Hangen H, Detert O, Alexiew D (2008) Biaxial testing of geogrids: recent developments. In: Proceedings of the 4th European geosynthetics conf. EuroGeo4, International Geosynthetics Society, Edinburgh, Scotland, vol 258

Download references

Funding

This research is supported by the National Key R&D Program of China (Grant No. 2022YFE0104600), the National Natural Science Foundation of China (Grants Nos. 52079078 and 52108331), Hebei Province Science Foundation for Youths (Grant No. E2021210010) and the Graduate Student Innovation Grant Program of Shijiazhuang Tiedao University (Grant No. YC2023005).

Author information

Authors and Affiliations

Authors

Contributions

Penghui Su: Conceptualization, methodology, investigation, formal analysis, visualization, resources, writing—original draft. Guangqing Yang: Funding acquisition, resources, supervision, writing—review and editing. He Wang: writing—review and editing. Peng Xu: Funding acquisition, resources, supervision, writing—review and editing. Zhijie Wang: writing—review and editing. Qiaoyi Li: methodology, investigation, writing—review and editing.

Corresponding author

Correspondence to Guangqing Yang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, P., Yang, G., Wang, H. et al. Evaluation of Mechanical Properties of Warp-Knitted Polyester Geogrids Under Uniaxial and Biaxial Tensile Loading. Int. J. of Geosynth. and Ground Eng. 10, 55 (2024). https://doi.org/10.1007/s40891-024-00563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-024-00563-1

Keywords

Navigation