Log in

Simulation of Double-Shock Ejecta Production

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

We have performed continuum simulations of ejecta production from multiply-shocked metal surfaces. We describe the underlying computational capability, and discuss the results of our calculations. While still at a developmental stage, these results demonstrate the fundamental linkage between the production of ejecta and sub-surface material failure, explaining qualitative features seen in previous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mader CL, Neal TR, Dick RD (eds) (1980) LASL Phermex data, vol 1. University of California Press, Berkeley

    Google Scholar 

  2. Bristow WF, Hyde EF (1969) Surface spray from explosively accelerated metal plates as an indicator of melting. Technical report, O56/69, AWE

  3. Asay JR, Mix LP, Perry F (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29:284

    Article  Google Scholar 

  4. Asay JR (1978) Thick-plate technique for measuring ejecta from shock surfaces. J Appl Phys 49(12):6173–6175

    Article  Google Scholar 

  5. Mikhailov A, Ogorodnikov V, Sasik V, Raevskii V, Lebedev A, Zotov D, Erunov S, Syrunin M, Sadunov V, Nevmerzhitskii N, Lobastov S, Burtsev V, Mishanov A, Kulakov E, Satarova A, Georgievskaya A, Knyazev V, Kleshchevnikov O, Antipov M, Glushikhin V, Yurtov I, Utenkov A, Sen’kovskii E, Abakumov S, Presnyakov D, Kalashnik I, Panov K, Arinin V, Tkachenko B, Filyaev V, Chapaev A, Andramanov A, Lebedeva M, Igonin V (2014) Experimental-calculation simulation of theejection of particles from a shock-loaded surface. J Exp Theor Phys 118:785–797

    Article  Google Scholar 

  6. Cherne FJ, Hammerberg JE, Andrews MJ, Karkhanis V, Ramaprabhu P (2015) On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum. J Appl Phys 118(18):185901

    Article  Google Scholar 

  7. Durand O, Soulard L (2015) Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations. J Appl Phys 117(16):165903, 1–15

  8. Georgievskaya AB, Raevsky VA (2012) Estimation of the spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shockwave effect. AIP Conference Proceedings 1426:1007–1010

    Article  Google Scholar 

  9. Dimonte G, Terrones G, Cherne F, Ramaprabhu P (2013) Ejecta source model based on the nonlinear Richtmyer-Meshkov instability. J Appl Phys 113(2):024905

    Article  Google Scholar 

  10. Grieves B (2007) 2D direct numerical simulation of ejecta production. In: Legrand M, Vandenboomgaerde M (eds) Proceedings of the tenth international workshop on the physics of compressible turbulent mixing. Commissariat à l’Energie Atomique, pp 95–98

  11. Liu Y, Grieves B (2014) Ejecta production and transport from a shocked Sn coupon. J Fluids Eng 136(9):091202

    Article  Google Scholar 

  12. Buttler W, Oró D, Olson R, Cherne F, Hammerberg J, Hixson R, Monfared S, Pack C, Rigg P, Stone J et al (2014) Second shock ejecta measurements with an explosively driven two-shockwave drive. J Appl Phys 116(10):103519

    Article  Google Scholar 

  13. Mehta S (2006) Theoretical melt curves of Al, Cu, Ta and Pb. In: Furnish MD, Elert M, Russell TP, White CT (eds) Shock compression of condensed matter. American institute of physics conference series, vol 845. pp 258–261

  14. Steinberg D, Cochran S, Guinan M (1980) A constitutive model for metals applicable at high-strain rate. J Appl Phys 51(3):1498–1504

    Article  Google Scholar 

  15. Johnson JN (1981) Dynamic fracture and spallation in ductile solids. J Appl Phys 52(4):2812–2825

    Article  Google Scholar 

  16. Buttler WT, Oró DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703:760–784

    Article  Google Scholar 

  17. Thomas SA, Veeser LR, Turley WD, Hixson RS (2016) Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments. J Dyn Behav Mater 2(3):365–371

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without extensive code and material model development by past and current AWE staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. R. Williams.

Additional information

©British Crown Owned Copyright 2017/AWE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, R.J.R., Grapes, C.C. Simulation of Double-Shock Ejecta Production. J. dynamic behavior mater. 3, 291–299 (2017). https://doi.org/10.1007/s40870-017-0107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0107-5

Keywords

Navigation