Log in

Square meter lever and durable photocatalytic hydrogen production by manipulating the growth of a graphdiyne morphology S-scheme heterojunction

石墨炔基S型异质结构建及**米级光催化产氢

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Graphdiyne is a promising photocatalytic material for solar energy conversion because of its high carrier mobility and ordered pore structure. In this work, a novel spherical graphdiyne (S-GDY) was prepared by crosscoupling and cleverly coupled with rod-like Mn0.2Cd0.8S to form an S-scheme heterojunction for photocatalytic hydrogen evolution, which is applied for the first time in this field. As anticipated, the Mn0.2Cd0.8S/S-GDY heterojunction photocatalyst showed remarkable photocatalytic activity, exceeding the individual catalysts Mn0.2Cd0.8S and S-GDY by factors of 16.78 and 613.2, respectively. Moreover, it was successfully applied to hydrogen production on the square meter scale. The exceptional photocatalytic activity can be ascribed to the introduction of the unique morphology of graphdiyne and the formation of the S-scheme heterojunction. The formation of the S-scheme heterojunction and improvement of photocatalytic activity were revealed by ultraviolet photoelectron spectroscopy, in-situ irradiation X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance, and other basic characterization methods. This work offers insights into the preparation of morphologically tunable graphdiyne and the design and synthesis of efficient heterojunction photocatalysts.

摘要

石墨炔由于其高载流子迁移率和有序的孔隙结构被认为是一种 很有应用前景的光催化材料. 本研究通过交叉偶联合成了一种新型球 状石墨炔, 并与棒状Mn0.2Cd0.8 S耦合构建了S型异质结用于光催化析氢. 结果表明, Mn0.2Cd0.8 S/石墨炔异质结光催化剂表现出优异的光催化活 性, 产氢性能分别较Mn0.2Cd0.8 S和球形石墨炔单体催化剂提升了16.78 和613.2倍. 同时, 该催化剂应用于**米级规模产氢取得较好效果. 其优 异的光催化活性可归因于石墨炔的独特性能及S-scheme异质结的有效 构建. 通过紫外光电子能谱、原位辐射X射线光电子能谱、电子顺磁共 振能谱、密度泛函理论计算和其他表征技术探究了S-scheme异质结的 形成和光催化活性的增**. 该工作可为石墨炔的形貌可调性制备以及 高效异质结光催化剂的设计和合成提供新参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Referefces

  1. Han G, Xu F, Cheng B, et al. Enhanced photocatalytic H2O2 production over inverse opal ZnO@ polydopamine S-scheme heterojunctions. Acta Physico Chim Sin, 2022, 0: 2112037–0

    Article  Google Scholar 

  2. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  3. Gao D, Long H, Wang X, et al. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv Funct Mater, 2023, 33: 2209994

    Article  CAS  Google Scholar 

  4. Yang H, Zhang J, Dai K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin J Catal, 2022, 43: 255–264

    Article  CAS  Google Scholar 

  5. Han S, Li B, Huang L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photocatalytic reduction of CO2 with visible light. Chin J Struct Chem, 2022, 41: 2201007–2201006

    CAS  Google Scholar 

  6. Zhang L, Hao X, Li J, et al. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution. Chin J Catal, 2020, 41: 82–94

    Article  Google Scholar 

  7. Zhang J, Wang L, Mousavi M, et al. Molecular-level engineering of S-scheme heterojunction: The site-specific role for directional charge transfer. Chin J Struct Chem, 2022, 41: 2206003–2206005

    CAS  Google Scholar 

  8. Sayed M, Yu J, Liu G, et al. Non-noble plasmonic metal-based photocatalysts. Chem Rev, 2022, 122: 10484–10537

    Article  CAS  PubMed  Google Scholar 

  9. Gao D, Deng P, Zhang J, et al. Reversing free-electron transfer of MoS2+I cocatalyst for optimizing antibonding-orbital occupancy enables high photocatalytic H2 evolution. Angew Chem Int Ed, 2023, 62: e202304559

    Article  CAS  Google Scholar 

  10. He K, Shen R, Hao L, et al. Advances in nanostructured silicon carbide photocatalysts. Acta Physico Chim Sin, 2022, 38: 2201021

    Google Scholar 

  11. Li T, Tsubaki N, ** Z. S-scheme heterojunction in photocatalytic hydrogen production. J Mater Sci Tech, 2024, 169: 82–104

    Article  Google Scholar 

  12. Zhong W, Xu J, Zhang X, et al. Charging d-orbital electron of ReS2+x cocatalyst enables splendid alkaline photocatalytic H2 evolution. Adv Funct Mater, 2023, 33: 2302325

    Article  CAS  Google Scholar 

  13. Bai J, Shen R, Jiang Z, et al. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin J Catal, 2022, 43: 359–369

    Article  CAS  Google Scholar 

  14. Yu W, Fu HJ, Mueller T, et al. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research. J Chem Phys, 2020, 153: 020902

    Article  CAS  PubMed  Google Scholar 

  15. Lv JX, Zhang ZM, Wang J, et al. In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production. ACS Appl Mater Interfaces, 2019, 11: 2655–2661

    Article  CAS  PubMed  Google Scholar 

  16. Jiang A, Guo H, Yu S, et al. Dual charge-accepting engineering modified AgIn5S8/CdS quantum dots for efficient photocatalytic hydrogen evolution overall H2S splitting. Appl Catal B-Environ, 2023, 332: 122747

    Article  CAS  Google Scholar 

  17. Sun G, Tai Z, Li F, et al. Construction of ZnIn2S4/CdS/PdS S-scheme heterostructure for efficient photocatalytic H2 production. Small, 2023, 19: 202207758

    Google Scholar 

  18. Gao R, He H, Bai J, et al. Pyrene-benzothiadiazole-based polymer/CdS 2D/2D organic/inorganic hybrid S-scheme heterojunction for efficient photocatalytic H2 evolution. Chin J Struct Chem, 2022, 41: 2206031–2206038

    CAS  Google Scholar 

  19. Wang XP, ** ZL, Li X. Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p-n heterojunction for efficient photocatalytic hydrogen evolution. Rare Met, 2023, 42: 1494–1507

    Article  CAS  Google Scholar 

  20. Wu Y, Zhang L, Li Y, et al. NiAl-LDH in situ derived M2P and ZnCdS nanoparticles ingeniously constructed S-scheme heterojunction for photocatalytic hydrogen evolution. ChemCatChem, 2022, 14: e202101656

    Article  CAS  Google Scholar 

  21. ** Z, Li T, Zhang L, et al. Construction of a tandem S-scheme GDY/ CuI/CdS-R heterostructure based on morphology-regulated graphdiyne (g-CnH2n–2) for enhanced photocatalytic hydrogen evolution. J Mater Chem A, 2022, 10: 1976–1991

    Article  Google Scholar 

  22. Li X, Li T, Liu H, et al. Regulation on MoO2/Mn0.2Cd0.8S S-scheme heterojunction for efficient hydrogen evolution. Int J Hydrogen Energy, 2022, 47: 11561–11573

    Article  CAS  Google Scholar 

  23. Bie C, Cheng B, Ho W, et al. Graphdiyne-based photocatalysts for solar fuel production. Green Chem, 2022, 24: 5739–5754

    Article  CAS  Google Scholar 

  24. ** Z. Application of graphdiyne in photocatalysis. J Chin Ceram Soc, 2023, 51: 106–116

    CAS  Google Scholar 

  25. Yang C, Wang X, Wu Y, et al. Rational construction of electrostatic self-assembly of metallike MoP and ZnIn2S4 based on density functional theory to form Schottky junction for photocatalytic hydrogen production. Sol RRL, 2023, 7: 2300311

    Article  CAS  Google Scholar 

  26. Zhu Z, Bai Q, Li S, et al. Antibacterial activity of graphdiyne and graphdiyne oxide. Small, 2020, 16: 2001440

    Article  CAS  Google Scholar 

  27. Yang C, Wang X, Wu Y, et al. Rationally engineered active site over graphdiyne (CnH2n-2) based S-scheme heterojunction for efficient and durable hydrogen production. Chem Eng J, 2023, 470: 144424

    Article  CAS  Google Scholar 

  28. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev, 2010, 110: 132–145

    Article  CAS  PubMed  Google Scholar 

  29. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—The route toward applications. Science, 2002, 297: 787–792

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Pei C, Feng M, Yang Z, et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate. Carbon, 2017, 124: 499–505

    Article  CAS  Google Scholar 

  31. Qi L, Zheng Z, **ng C, et al. 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting. Adv Funct Mater, 2022, 32: 2107179

    Article  CAS  Google Scholar 

  32. Lei Z, Ma X, Hu X, et al. Enhancement of photocatalytic H2-evolution kinetics through the dual cocatalyst activity of Ni2P-NiS-decorated g-C3N4 heterojunctions. Acta Physico Chim Sin, 2021, 0: 2110049–0

    Article  Google Scholar 

  33. Wang T, ** Z. Graphdiyne (CnH2n−2) based CuI-GDY/ZnAl LDH double S-scheme heterojunction proved with in situ XPS for efficient photocatalytic hydrogen production. J Mater Sci Tech, 2023, 155: 132–141

    Article  CAS  Google Scholar 

  34. ** Z, Li X, Li T, et al. Graphdiyne (QH2n−2) based GDY/CuI/MIL-53 (Al) S-scheme heterojunction for efficient hydrogen evolution. Langmuir, 2022, 38: 15632–15641

    Article  CAS  PubMed  Google Scholar 

  35. Liang Z, Shen R, Zhang P, et al. All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation. Chin J Catal, 2022, 43: 2581–2591

    Article  CAS  Google Scholar 

  36. Yin XP, Luo SW, Tang SF, et al. In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolution. Chin J Catal, 2021, 42: 1379–1386

    Article  CAS  Google Scholar 

  37. Li T, ** Z. Rationally engineered avtive sites for efficient and durable hydrogen production over y-graphyne assembly CuMoO4 S-scheme heterojunction. J Catal, 2023, 417: 274–285

    Article  CAS  Google Scholar 

  38. Gao X, Tian J, Cheng S, et al. Low-strain cathode by sp-carbon induced conversion in multi-level structure of graphdiyne. Angew Chem Int Ed, 2023, 62: e202304491

    Article  CAS  Google Scholar 

  39. Yang C, Wang X, Li T, et al. Rational design and construction of graphdiyne (CnH2n–2) based NiMoO4/GDY/CuO in situ XPS proved double S-scheme heterojunctions for photocatalytic hydrogen production. Langmuir, 2023, 39: 9816–9830

    Article  CAS  PubMed  Google Scholar 

  40. Fang Y, Liu Y, Qi L, et al. 2D graphdiyne: An emerging carbon material. Chem Soc Rev, 2022, 51: 2681–2709

    Article  CAS  PubMed  Google Scholar 

  41. Liang S, Deng H, Zhou Z, et al. Fabrication of graphdiyne and its analogues for photocatalytic application. EcoMat, 2023, 5: e12297

    Article  CAS  Google Scholar 

  42. Yang K, Liu T, **ang D, et al. Graphdiyne (g-CnH2n–-2) based Co3S4 anchoring and edge-covalently modification coupled with carbon-defects g-C3N4 for photocatalytic hydrogen production. Separation Purification Tech, 2022, 298: 121564

    Article  CAS  Google Scholar 

  43. Shang H, Zuo Z, Li L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew Chem Int Ed, 2018, 57: 774–778

    Article  CAS  Google Scholar 

  44. Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ, 2019, 243: 556–565

    Article  CAS  Google Scholar 

  45. **ang X, Zhu B, Cheng B, et al. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16: 2001024

    Article  CAS  Google Scholar 

  46. Wang Y, Gao L, Huo J, et al. Designing novel 0D/1D/2D NiO@La (OH)3/g-C3N4 heterojunction for enhanced photocatalytic hydrogen production. Chem Eng J, 2023, 460: 141667

    Article  CAS  Google Scholar 

  47. Li X, Lei M, ** Z. Reinforced photogenerated electrons transfer on a novel graphdiyne (CnH2n–2) based heterojunction for enhanced photocatalytic hydrogen production. J Catal, 2023, 428: 115131

    Article  CAS  Google Scholar 

  48. Li W, Chu X, Wang F, et al. Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light. Appl Catal B-Environ, 2022, 304: 121000

    Article  CAS  Google Scholar 

  49. Wang L, Cheng B, Zhang L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  50. Tan M, Ma Y, Yu C, et al. Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv Funct Mater, 2021, 32: 2111740

    Article  Google Scholar 

  51. Cheng L, Yue X, Fan J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Adv Mater, 2022, 34: 2200929

    Article  CAS  Google Scholar 

  52. Zhang J, Zhang L, Wang W, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst. J Phys Chem Lett, 2022, 13: 8462–8469

    Article  CAS  PubMed  Google Scholar 

  53. Xu Q, Wageh S, Al-Ghamdi AA, et al. Design principle of S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2022, 124: 171–173

    Article  Google Scholar 

  54. Wang L, Bie C, Yu J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem, 2022, 4: 973–983

    Article  CAS  Google Scholar 

  55. Yue X, Fan J, **ang Q. Internal electric field on steering charge migration: Modulations, determinations and energy-related applications. Adv Funct Mater, 2022, 32: 2110258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of the Ningxia Hui Autonomous Region (2023AAC02046).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang C designed the experiments; Yang C and Li X operated all the experiments; ** Z provided all the reagents and analysis tools; Yang C completed the writing of this paper.

Corresponding author

Correspondence to Zhiliang **  (靳治良).

Ethics declarations

Conflict of interest The authors declare no competing financial interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Cheng Yang is currently pursuing an MS in ** Zhiliang’s research group at the School of Chemistry and Chemical Engineering, North Minzu University. His research focuses on the construction of semiconductor heterojunction photocatalysts and their application in photocatalytic hydrogen production.

**aohong Li is currently pursuing an MS in ** Zhiliang’s research group at the School of Chemistry and Chemical Engineering, North Minzu University. Her research focuses on the preparation of photocatalysts and their application in photocatalytic hydrogen production.

Zhiliang ** received his PhD in 2006 from Lanzhou Institute of Chemical Physics, Chinese Academy ofSciences. From 2006 to 2014, he worked at the State Key Laboratory of Carbonyl Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. He is currently a professor at the North Minzu University for nationalities. He is mainly engaged in the research on clean energy (photocatalytic hydrogen production), environmental chemical industry (catalytic elimination of environmental pollutants), and cultural heritage protection.

Supplementary Information

40843_2023_2724_MOESM1_ESM.pdf

Square meter lever and durable photocatalytic hydrogen production by manipulating the growth of a graphdiyne morphology S-scheme heterojunction

Supplementary material, approximately 6.53 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Li, X. & **, Z. Square meter lever and durable photocatalytic hydrogen production by manipulating the growth of a graphdiyne morphology S-scheme heterojunction. Sci. China Mater. 67, 493–503 (2024). https://doi.org/10.1007/s40843-023-2724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2724-0

Keywords

Navigation