Log in

Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: Enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light

构建具有微妙的原子级紧密接触的ZnIn2S4/Sv-MoS2光催化剂: 增**界面相互作用以改善可见光下的光催化产氢性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The low charge separation efficiency between catalyst and cocatalyst severely limits the performance of photocatalysts. The strong interfacial interactions between catalyst and cocatalyst can improve the charge separation efficiency. Introducing interfacial chemical bonds to enhance the interfacial interaction between components is an effective way to improve photocatalytic performance. Herein, ZnIn2S4 (ZIS)/Sv-MoS2 photocatalyst was synthesized. The binding effect between S atoms in ZIS and the uncoordinated Mo atoms in Sv-MoS2 forms the interfacial Mo-S bond which greatly improves the photocatalytic activity of ZIS. The MoS2-xh was prepared by NaBH4 etching for different times. This extraordinary photocatalytic activity is mainly due to the easy transfer of photogenerated electrons from ZIS to MoS2via the heterojunction interface tightly connected under the action of Mo-S bonds. Photoelectric measurements show that ZIS/MoS2-4h possesses effective charge transfer. This work reveals the effect of the introduction of interfacial chemical bonds on the photocatalytic activity of ZIS/MoS2, and provides a simple and effective method for designing excellent cocatalysts through interface engineering.

摘要

催化剂与助催化剂之间的低电荷分离效率严重限制了光催化性能. 催化剂与助催化剂之间的**界面相互作用可以提高电荷分离效率. 通过引入界面化学键增**组分间的界面相互作用是提高光催化性能的有效手段之一. 本文合成了ZnIn2S4 (ZIS)/Sv-MoS2光催化剂, ZIS中的S原子与Sv-MoS2中未配位Mo原子之间的键合作用形成了界面Mo-S键, 这极大地提高了ZIS的光催化活性. 采用不同的NaBH4蚀刻时间制备了MoS2-xh. 优化后的ZIS/MoS2-4h 复合材料的产氢速率为7.6 mmol g−1 h−1, 是原ZIS (1.6 mmol g−1 h−1)的4.75倍, 是ZIS/MoS2(3.7 mmol g−1 h−1)的2.05倍. 非凡的光催化活性可归因于光生电子在Mo-S键的作用下更容易从ZIS转移到MoS2. 光电测量表明, ZIS/MoS2-4h具有有效的电荷转移. 本工作揭示了引入界面化学键对ZIS/MoS2光催化活性的影响, 为通过界面工程设计优良的助催化剂提供了一种简单有效的方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. **ng F, Zeng R, Cheng C, et al. POM-incorporated ZnIn2S4 Z-scheme dual-functional photocatalysts for cooperative benzyl alcohol oxidation and H2 evolution in aqueous solution. Appl Catal B-Environ, 2022, 306: 121087

    Article  CAS  Google Scholar 

  2. Nikoloudakis E, López-Duarte I, Charalambidis G, et al. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem Soc Rev, 2022, 51: 6965–7045

    Article  CAS  Google Scholar 

  3. Simon T, Bouchonville N, Berr MJ, et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater, 2014, 13: 1013–1018

    Article  CAS  Google Scholar 

  4. Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440: 295

    Article  CAS  Google Scholar 

  5. Wang Y, Zhang Z, Li J, et al. Two-dimensional-on-three-dimensional metal-organic frameworks for photocatalytic H2 production. Angew Chem Int Ed, 2022, 61: e202211031

    CAS  Google Scholar 

  6. Lu Y, Yin WJ, Peng KL, et al. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat Commun, 2018, 9: 2752

    Article  Google Scholar 

  7. **ng W, Tu W, Han Z, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. ACS Energy Lett, 2018, 3: 514–519

    Article  CAS  Google Scholar 

  8. Yuan YJ, Yu ZT, Chen DQ, et al. Metal-complex chromophores for solar hydrogen generation. Chem Soc Rev, 2017, 46: 603–631

    Article  CAS  Google Scholar 

  9. Xu M, Li D, Sun K, et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew Chem Int Ed, 2021, 60: 16372–16376

    Article  CAS  Google Scholar 

  10. Mao S, Shi JW, Sun G, et al. PdS quantum dots as a hole attractor encapsulated into the MOF@Cd0.5Zn0.5S heterostructure for boosting photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces, 2022, 14: 48770–48779

    Article  CAS  Google Scholar 

  11. Zhang M, Qin C, Sun W, et al. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation. Chin J Catal, 2022, 43: 1818–1829

    Article  CAS  Google Scholar 

  12. Vamvasakis I, Papadas IT, Tzanoudakis T, et al. Visible-light photocatalytic H2 production activity of β-Ni(OH)2-modified CdS mesoporous nanoheterojunction networks. ACS Catal, 2018, 8: 8726–8738

    Article  CAS  Google Scholar 

  13. **ang X, Zhu B, Cheng B, et al. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16: 2001024

    Article  CAS  Google Scholar 

  14. Cui C, Zhao X, Su X, et al. Porphyrin-based donor-acceptor covalent organic polymer/ZnIn2S4 Z-scheme heterostructure for efficient photocatalytic hydrogen evolution. Adv Funct Mater, 2022, 32: 2208962

    Article  CAS  Google Scholar 

  15. Zhou D, Xue X, Wang X, et al. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: Modulating charge flow and balancing H adsorption/desorption. Appl Catal B-Environ, 2022, 310: 121337

    Article  CAS  Google Scholar 

  16. Yang W, Zhang L, **e J, et al. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew Chem Int Ed, 2016, 55: 6716–6720

    Article  CAS  Google Scholar 

  17. Ma K, Zhang M, Sun W, et al. Revealing different depth boron substitution on interfacial charge transfer in TiO2 for enhanced visible-light H2 production. Appl Catal B-Environ, 2022, 315: 121570

    Article  CAS  Google Scholar 

  18. Tan M, Yu C, Zeng H, et al. In situ fabrication of MIL-68(In)@ZnIn2S4 heterojunction for enhanced photocatalytic hydrogen production. Nanoscale, 2023, 15: 2425–2434

    Article  CAS  Google Scholar 

  19. Guan Z, Pan J, Li Q, et al. Boosting visible-light photocatalytic hydrogen evolution with an efficient CuInS2/ZnIn2S4 2D/2D heterojunction. ACS Sustain Chem Eng, 2019, 7: 7736–7742

    Article  CAS  Google Scholar 

  20. Chen Z, Guo F, Sun H, et al. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J Colloid Interface Sci, 2020, 607: 1391–1401

    Article  Google Scholar 

  21. Liang Q, Gao W, Liu C, et al. A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity. J Hazard Mater, 2020, 392: 122500

    Article  CAS  Google Scholar 

  22. Jiang R, Mao L, Zhao Y, et al. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci China Mater, 2023, 66: 139–149

    Article  CAS  Google Scholar 

  23. Sun G, Shi JW, Mao S, et al. Dodecylamine coordinated tri-arm CdS nanorod wrapped in intermittent ZnS shell for greatly improved photocatalytic H2 evolution. Chem Eng J, 2022, 429: 132382

    Article  CAS  Google Scholar 

  24. Wang X, Sun K, Gu S, et al. Construction of a novel electron transfer pathway by modifying ZnIn2S4 with α-MnO2 and Ag for promoting solar H2 generation. Appl Surf Sci, 2021, 549: 149341

    Article  CAS  Google Scholar 

  25. Liu X, Wang S, Yang F, et al. Construction of Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture for visible-light-driven hydrogen production. Int J Hydrogen Energy, 2022, 47: 2900–2913

    Article  CAS  Google Scholar 

  26. Zhang J, Yang G, He B, et al. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting. Chin J Catal, 2022, 43: 2530–2538

    Article  CAS  Google Scholar 

  27. Cao B, Li G, Li H. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Appl Catal B-Environ, 2016, 194: 42–49

    Article  CAS  Google Scholar 

  28. Mao S, Shi JW, Sun G, et al. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. Appl Catal B-Environ, 2021, 282: 119550

    Article  CAS  Google Scholar 

  29. Liang Z, Shen R, Ng YH, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Tech, 2020, 56: 89–121

    Article  CAS  Google Scholar 

  30. Guo L, Yang Z, Marcus K, et al. MoS2/TiO2 heterostructures as non-metal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ Sci, 2018, 11: 106–114

    Article  CAS  Google Scholar 

  31. He J, Chen L, Wang F, et al. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. ChemSusChem, 2016, 9: 624–630

    Article  CAS  Google Scholar 

  32. Jia WL, Wu X, Liu Y, et al. Porous ZnIn2S4 with confined sulfur vacancies for highly efficient visible-light-driven photocatalytic H2 production. J Mater Chem A, 2022, 10: 25586–25594

    Article  CAS  Google Scholar 

  33. Peng X, Li J, Yi L, et al. Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1,4-benzenedimethanol valorization. Appl Catal B-Environ, 2022, 300: 120737

    Article  CAS  Google Scholar 

  34. Liu H, Zhang J, Ao D. Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Appl Catal B-Environ, 2018, 221: 433–442

    Article  CAS  Google Scholar 

  35. Wang P, Fan S, Li X, et al. Piezotronic effect and hierarchical Z-scheme heterostructure stimulated photocatalytic H2 evolution integrated with C-N coupling of benzylamine. Nano Energy, 2021, 89: 106349

    Article  CAS  Google Scholar 

  36. Wei L, Chen Y, Lin Y, et al. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl Catal B-Environ, 2014, 144: 521–527

    Article  CAS  Google Scholar 

  37. Zhang Z, Huang L, Zhang J, et al. In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 233: 112–119

    Article  CAS  Google Scholar 

  38. Yuan YJ, Tu JR, Ye ZJ, et al. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Appl Catal B-Environ, 2016, 188: 13–22

    Article  CAS  Google Scholar 

  39. Wang X, Wang X, Tian W, et al. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo-N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Appl Catal B-Environ, 2022, 303: 120933

    Article  CAS  Google Scholar 

  40. Shen R, Zhang L, Li N, et al. W-N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catal, 2022, 12: 9994–10003

    Article  CAS  Google Scholar 

  41. Tian Y, Ge L, Wang K, et al. Synthesis of novel MoS2/g-C3N4 heterojunction photocatalysts with enhanced hydrogen evolution activity. Mater Charact, 2014, 87: 70–73

    Article  CAS  Google Scholar 

  42. Li X, Wang X, Zhu J, et al. Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution. Chem Eng J, 2018, 353: 15–24

    Article  CAS  Google Scholar 

  43. Liao W, **e K, Liu L, et al. Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. J Energy Chem, 2021, 62: 359–366

    Article  CAS  Google Scholar 

  44. Ye G, Gong Y, Lin J, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett, 2016, 16: 1097–1103

    Article  CAS  Google Scholar 

  45. Nan H, Wang Z, Wang W, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8: 5738–5745

    Article  CAS  Google Scholar 

  46. Luo N, Chen C, Yang D, et al. S defect-rich ultrathin 2D MoS2: The role of S point-defects and S strip**-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis. Appl Catal B-Environ, 2021, 299: 120664

    Article  CAS  Google Scholar 

  47. Wang X, Wang X, Huang J, et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun, 2021, 12: 4112

    Article  CAS  Google Scholar 

  48. Fang Z, Huang X, Wang Y, et al. Dual-defective strategy directing in situ assembly for effective interfacial contacts in MoS2 cocatalyst/In2S3 light harvester layered photocatalysts. J Mater Chem A, 2016, 4: 13980–13988

    Article  CAS  Google Scholar 

  49. He K, **e J, Li M, et al. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation. Appl Surf Sci, 2018, 430: 208–217

    Article  CAS  Google Scholar 

  50. Lu X, Che W, Hu X, et al. The facile fabrication of novel visible-light-driven Z-scheme CuInS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chem Eng J, 2019, 356: 819–829

    Article  CAS  Google Scholar 

  51. Wang S, Guan BY, Wang X, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc, 2018, 140: 15145–15148

    Article  CAS  Google Scholar 

  52. Wang H, Naghadeh SB, Li C, et al. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci China Mater, 2018, 61: 839–850

    Article  CAS  Google Scholar 

  53. Zhang J, Tian X, Liu M, et al. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J Am Chem Soc, 2019, 141: 19269–19275

    Article  CAS  Google Scholar 

  54. Jia WL, Li WJ, Yuan HY, et al. Surface Cu+ modified ZnIn2S4 for promoted visible-light photocatalytic hydrogen evolution. J Energy Chem, 2022, 74: 341–348

    Article  CAS  Google Scholar 

  55. **ao M, Zhang L, Luo B, et al. Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew Chem, 2020, 132: 7297–7301

    Article  Google Scholar 

  56. Ren X, Li C, Liu J, et al. The fabrication of Pd single atoms/clusters on COF layers as co-catalysts for photocatalytic H2 evolution. ACS Appl Mater Interfaces, 2022, 14: 6885–6893

    Article  CAS  Google Scholar 

  57. Zang S, Zhang G, Lan ZA, et al. Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. Appl Catal B-Environ, 2019, 251: 102–111

    Article  CAS  Google Scholar 

  58. Xu J, Yan X, Qi Y, et al. Novel phosphidated MoS2 nanosheets modified CdS semiconductor for an efficient photocatalytic H2 evolution. Chem Eng J, 2019, 375: 122053

    Article  CAS  Google Scholar 

  59. Ding D, Jiang Z, Ji D, et al. Bi2O2Se as a novel co-catalyst for photocatalytic hydrogen evolution reaction. Chem Eng J, 2020, 400: 125931

    Article  CAS  Google Scholar 

  60. Li Y, Wang L, Cai T, et al. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem Eng J, 2017, 321: 366–374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1501500), the National Natural Science Foundation of China (22033008, 22220102005, and 22171265), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ103).

Author information

Authors and Affiliations

Authors

Contributions

Gao S and Ye S designed and engineered the experiments; Ye S performed the experiments and the characterizations; Ye S wrote the paper with support from Gao S and Cao R. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Shuiying Gao  (高水英) or Rong Cao  (曹荣).

Additional information

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Shihua Ye is currently a Master student at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM, CAS).

Shuiying Gao received her Master degree from Lanzhou Institute of Chemical Physics, CAS in 2002. She obtained her PhD degree from FJIRSM, CAS, in 2006. In 2014, she became a professor of FJIRSM. Her research interest focuses on thin-film materials and photocatalysis.

Rong Cao obtained his PhD degree from FJIRSM, CAS, in 1993. Following post-doctoral experience at the Hong Kong Polytechnic University and JSPS Fellowship at Nagoya University, he became a professor of FJIRSM in 1998. Now, he is the director of FJIRSM. His main research interests include supramolecular chemistry, inorganic-organic hybrid materials and nanocatalysts.

Supporting Information

40843_2023_2456_MOESM1_ESM.pdf

Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Li, J., Feng, Y. et al. Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: Enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light. Sci. China Mater. 66, 3146–3154 (2023). https://doi.org/10.1007/s40843-023-2456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2456-6

Keywords

Navigation