Log in

Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption

三维多孔碳基吸波材料的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

With the increasingly serious electromagnetic wave (EMW) pollution, the development of high-performance EMW absorbing materials (EWAMs) has become a hot topic. Carbon-based EWAMs have excellent chemical stability, high electrical conductivity, and strong dielectric loss. In particular, three-dimensional (3D) porous carbon-based EWAMs have been widely developed in the EMW absorption field. The 3D porous structure not only reduces the materials’ mass density, but also improves the multiple reflections of incident EMWs and impedance matching. The carbon-based EWAMs are thus expected to achieve the goals of low density, low thickness, wide absorption bandwidth, and strong absorption. Herein, we first restated the relevant theoretical basis and evaluation methods. Then, we summarized the recent research progress of 3D porous carbon-based EWAMs with the source of the materials as the main clue. Some unique and novel viewpoints were highlighted. Finally, the challenges and prospects of 3D porous carbon-based EWAMs were put forward, which is helpful for guiding a further development of high-performance EWAMs.

摘要

随着电磁波(EMW)污染的日益严重, 开发高性能电磁波吸收材料(EWAMs)已成为研究热点. 碳基EWAMs具有优异的物理、化学稳定性和高导电性带来的**介电损耗. 特别是三维(3D)多孔碳基EWAMs在EMW吸收研究领域长盛不衰. 3D多孔结构大大降低了材料的密度, 有利于EMW的多次反射和散射, 优化了阻抗匹配, 因此有望实现“低密度、薄厚度、宽吸收带宽、**吸收”的目标. 在此, 我们首先阐明了相关的理论基础和评价方法. 之后, 我们以材料来源为主线索, 总结了3D多孔碳基EWAMs的最新研究进展, 并突出了其中一些独特而新颖的观点. 最后, 提出了3D多孔碳基EWAMs的挑战和前景, 这将有助于高性能EWAMs的进一步发展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai Z, Su L, Wang H, et al. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000°C. ACS Appl Mater Interfaces, 2021, 13: 16704–16712

    Article  CAS  Google Scholar 

  2. Marra F, Lecini J, Tamburrano A, et al. Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite. Sci Rep, 2018, 8: 12029

    Article  CAS  Google Scholar 

  3. Qiao J, Zhang X, Liu C, et al. Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett, 2021, 13: 75

    Article  Google Scholar 

  4. Yang W, Zhang Y, Qiao G, et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17−xSix and their composites. Acta Mater, 2018, 145: 331–336

    Article  CAS  Google Scholar 

  5. Qiao J, Zhang X, Xu D, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem Eng J, 2020, 380: 122591

    Article  CAS  Google Scholar 

  6. Zhang X, Jia Z, Zhang F, et al. MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J Colloid Interface Sci, 2022, 610: 610–620

    Article  CAS  Google Scholar 

  7. Zhang M, Cao MS, Shu JC, et al. Electromagnetic absorber converting radiation for multifunction. Mater Sci Eng-R-Rep, 2021, 145: 100627

    Article  Google Scholar 

  8. Cao MS, Wang XX, Zhang M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater, 2019, 29: 1807398

    Article  Google Scholar 

  9. Zeng Z, Jiang F, Yue Y, et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv Mater, 2020, 32: 1908496

    Article  CAS  Google Scholar 

  10. Balci O, Polat EO, Kakenov N, et al. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun, 2015, 6: 6628

    Article  CAS  Google Scholar 

  11. Han C, Zhang M, Cao WQ, et al. Electrospinning and in-situ hierarchical thermal treatment to tailor C−NiCo2O4 nanofibers for tunable microwave absorption. Carbon, 2021, 171: 953–962

    Article  CAS  Google Scholar 

  12. Wang XX, Cao WQ, Cao MS, et al. Assembling nano-micro-architecture for electromagnetic absorbers and smart devices. Adv Mater, 2020, 32: 2002112

    Article  CAS  Google Scholar 

  13. Liu J, Jia Z, Zhou W, et al. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem Eng J, 2022, 429: 132253

    Article  CAS  Google Scholar 

  14. Tang Y, Yin P, Zhang L, et al. Novel carbon encapsulated zinc ferrite/MWCNTs composite: Preparation and low-frequency microwave absorption investigation. Ceramics Int, 2020, 46: 28250–28261

    Article  CAS  Google Scholar 

  15. Wahaab FA, Adebayo LL. Electromagnetic properties of Cr-substituted nickel ferrite nanoparticles and their microwave absorption performance. Ceramics Int, 2020, 46: 28506–28513

    Article  CAS  Google Scholar 

  16. Zhao B, Ma C, Liang L, et al. An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm, 2017, 19: 3640–3648

    Article  CAS  Google Scholar 

  17. Xu D, Yang Y, Lyu L, et al. One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chem Eng J, 2021, 410: 128295

    Article  CAS  Google Scholar 

  18. **a T, Zhang C, Oyler NA, et al. Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv Mater, 2013, 25: 6905–6910

    Article  CAS  Google Scholar 

  19. Xu D, Yang Y, Le K, et al. Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem Eng J, 2021, 417: 129350

    Article  CAS  Google Scholar 

  20. Guan XH, Qu P, Guan X, et al. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties. RSC Adv, 2014, 4: 15579–15585

    Article  CAS  Google Scholar 

  21. Luo J, Hu Y, **ao L, et al. Synthesis of 3D flower-like Fe3S4 microspheres and quasi-sphere Fe3S4-RGO hybrid-architectures with enhanced electromagnetic wave absorption. Nanotechnology, 2020, 31: 085708

    Article  CAS  Google Scholar 

  22. Huang B, Wang Z, Hu H, et al. Enhancement of the microwave absorption properties of PyC-SiCf/SiC composites by electrophoretic deposition of SiC nanowires on SiC fibers. Ceramics Int, 2020, 46: 9303–9310

    Article  CAS  Google Scholar 

  23. Li X, Wei J, Chen B, et al. Effective electromagnetic wave absorption and photoluminescence performances of flexible SiC nanowires membrane. Ceramics Int, 2021, 47: 17615–17626

    Article  CAS  Google Scholar 

  24. Zhang Z, Cai Z, Zhang Y, et al. The recent progress of MXene-based microwave absorption materials. Carbon, 2021, 174: 484–499

    Article  CAS  Google Scholar 

  25. Jiang L, Wang Z, Geng D, et al. Structure and electromagnetic properties of both regular and defective onion-like carbon nanoparticles. Carbon, 2015, 95: 910–918

    Article  CAS  Google Scholar 

  26. Qiang R, Du Y, Wang Y, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon, 2016, 98: 599–606

    Article  CAS  Google Scholar 

  27. Fu J, Yang W, Hou L, et al. Enhanced electromagnetic microwave absorption performance of lightweight bowl-like carbon nanoparticles. Ind Eng Chem Res, 2017, 56: 11460–11466

    Article  CAS  Google Scholar 

  28. Ye Z, Li Z, Roberts JA, et al. Electromagnetic wave absorption properties of carbon nanotubes-epoxy composites at microwave frequencies. J Appl Phys, 2010, 108: 054315

    Article  Google Scholar 

  29. Qi X, Yang Y, Zhong W, et al. Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities. J Solid State Chem, 2009, 182: 2691–2697

    Article  CAS  Google Scholar 

  30. Kong L, Yin X, Zhang Y, et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J Phys Chem C, 2013, 117: 19701–19711

    Article  CAS  Google Scholar 

  31. Yu H, Wang T, Wen B, et al. Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties. J Mater Chem, 2012, 22: 21679–21685

    Article  CAS  Google Scholar 

  32. Liu W, Li H, Zeng Q, et al. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A, 2015, 3: 3739–3747

    Article  CAS  Google Scholar 

  33. Shi Y, Gao X, Qiu J. Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam. Ceramics Int, 2019, 45: 3126–3132

    Article  CAS  Google Scholar 

  34. Guan H, Wang H, Zhang Y, et al. Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from jackfruit peel. Appl Surf Sci, 2018, 447: 261–268

    Article  CAS  Google Scholar 

  35. Gao S, An Q, **ao Z, et al. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv, 2018, 8: 19011–19023

    Article  CAS  Google Scholar 

  36. Li Q, Zhang Z, Qi L, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv Sci, 2019, 6: 1801057

    Article  Google Scholar 

  37. Tang J, Bi S, Wang X, et al. Excellent microwave absorption of carbon black/reduced graphene oxide composite with low loading. J Mater Sci, 2019, 54: 13990–14001

    Article  CAS  Google Scholar 

  38. Wang Z, Wei R, Gu J, et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon, 2018, 139: 1126–1135

    Article  CAS  Google Scholar 

  39. Zhang Z, Wang S, Lv Y, et al. MnO2 nanostructures deposited on graphene foams for broadband and lightweight electromagnetic absorption. J Alloys Compd, 2019, 810: 151744

    Article  CAS  Google Scholar 

  40. Kuang B, Ning M, Wang L, et al. Biopolymer nanofiber/reduced graphene oxide aerogels for tunable and broadband high-performance microwave absorption. Compos Part B-Eng, 2019, 161: 1–9

    Article  CAS  Google Scholar 

  41. Zhang X, Qiao J, Wang F, et al. Tailoring electromagnetic absorption performances of TiO2/CO/carbon nanofibers through tuning graphitization degrees. Ceramics Int, 2020, 46: 4754–4761

    Article  CAS  Google Scholar 

  42. Quan B, Shi W, Ong SJH, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv Funct Mater, 2019, 29: 1901236

    Article  Google Scholar 

  43. Wen B, Cao MS, Hou ZL, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65: 124–139

    Article  CAS  Google Scholar 

  44. Kittel C. On the theory of ferromagnetic resonance absorption. Phys Rev, 1948, 73: 155–161

    Article  CAS  Google Scholar 

  45. Qiao J, Zhang X, Liu C, et al. Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos Part B-Eng, 2020, 200: 108343

    Article  CAS  Google Scholar 

  46. Wang Y, Li X, Han X, et al. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem Eng J, 2020, 387: 124159

    Article  CAS  Google Scholar 

  47. Wu N, Xu D, Wang Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon, 2019, 145: 433–444

    Article  CAS  Google Scholar 

  48. Cao M, Wang X, Cao W, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small, 2018, 14: 1800987

    Article  Google Scholar 

  49. Wang XX, Zhang M, Shu JC, et al. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon, 2021, 184: 136–145

    Article  CAS  Google Scholar 

  50. Shi K, Li J, He S, et al. A superior microwave absorption material: Ni2+−Zr4+ co-doped barium ferrite ceramics with large reflection loss and broad bandwidth. Curr Appl Phys, 2019, 19: 842–848

    Article  Google Scholar 

  51. Wei W, Liu X, Lu W, et al. Light-weight gadolinium hydroxide@polypyrrole rare-earth nanocomposites with tunable and broadband electromagnetic wave absorption. ACS Appl Mater Interfaces, 2019, 11: 12752–12760

    Article  CAS  Google Scholar 

  52. Wang H, **ang L, Wei W, et al. Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl Mater Interfaces, 2017, 9: 42102–42110

    Article  CAS  Google Scholar 

  53. Chen C, Bao S, Zhang B, et al. Coupling Fe@Fe3O4 nanoparticles with multiple-walled carbon nanotubes with width band electromagnetic absorption performance. Appl Surf Sci, 2019, 467–468: 836–843

    Article  Google Scholar 

  54. Cao MS, Song WL, Hou ZL, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48: 788–796

    Article  CAS  Google Scholar 

  55. Zhang X, Qiao J, Jiang Y, et al. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett, 2021, 13: 135

    Article  CAS  Google Scholar 

  56. Zhou Y, Wang N, Muhammad J, et al. Graphene nanoflakes with optimized nitrogen do** fabricated by arc discharge as highly efficient absorbers toward microwave absorption. Carbon, 2019, 148: 204–213

    Article  CAS  Google Scholar 

  57. Singh SK, Akhtar MJ, Kar KK. Hierarchical carbon nanotube-coated carbon fiber: Ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl Mater Interfaces, 2018, 10: 24816–24828

    Article  CAS  Google Scholar 

  58. Liu L, He P, Zhou K, et al. Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. J Mater Sci, 2014, 49: 4379–4386

    Article  CAS  Google Scholar 

  59. Khadour M, Atassi Y, Abdallah M. Preparation and characterization of a flexible microwave absorber based on MnNiZn ferrite (Mn0.1Ni0.45−Zn0.45Fe2O4) in a thermoset polyurethane matrix. SN Appl Sci, 2020, 2: 1–2

    Article  Google Scholar 

  60. Ma J, Wang X, Cao W, et al. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem Eng J, 2018, 339: 487–498

    Article  CAS  Google Scholar 

  61. Wang L, **ng H, Gao S, et al. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J Mater Chem C, 2017, 5: 2005–2014

    Article  Google Scholar 

  62. Wen B, Cao M, Lu M, et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater, 2014, 26: 3484–3489

    Article  CAS  Google Scholar 

  63. González M, Baselga J, Pozuelo J. Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels. Carbon, 2019, 147: 27–34

    Article  Google Scholar 

  64. Liu P, Zhang Y, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J, 2019, 368: 285–298

    Article  CAS  Google Scholar 

  65. Li Q, Li S, Liu Q, et al. Iodine cation bridged graphene sheets with strengthened interface combination for electromagnetic wave absorption. Carbon, 2021, 183: 100–107

    Article  CAS  Google Scholar 

  66. Li T, Zhi D, Chen Y, et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res, 2020, 13: 477–484

    Article  CAS  Google Scholar 

  67. Sun X, Li Y, Huang Y, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv Funct Mater, 2022, 32: 2107508

    Article  CAS  Google Scholar 

  68. Fang Z, Cao X, Li C, et al. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon, 2006, 44: 3368–3370

    Article  CAS  Google Scholar 

  69. Chen Y, Zhang H, Zeng G. Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure. Carbon, 2018, 140: 494–503

    Article  CAS  Google Scholar 

  70. Shi S, Ren S, Hao S, et al. Graphene aerogel induced by ethanol-assisted method for excellent electromagnetic wave absorption. J Mater Sci, 2022, 57: 453–466

    Article  CAS  Google Scholar 

  71. Huang X, Yu G, Zhang Y, et al. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem Eng J, 2021, 426: 131894

    Article  CAS  Google Scholar 

  72. Zhang Y, Gu J. A perspective for develo** polymer-based electromagnetic interference shielding composites. Nano-Micro Lett, 2022, 14: 89

    Article  Google Scholar 

  73. Zeng Z, Wu N, Yang W, et al. Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small, 2022, 18: 2202047

    Article  CAS  Google Scholar 

  74. Cheng Z, Wang R, Cao Y, et al. Interfacial π−π interactions induced ultralight, 300°C-stable, wideband graphene/polyaramid foam for electromagnetic wave absorption in both gigahertz and terahertz bands. ACS Appl Mater Interfaces, 2022, 14: 3218–3232

    Article  CAS  Google Scholar 

  75. Jiang Q, Liao X, Yang J, et al. A two-step process for the preparation of thermoplastic polyurethane/graphene aerogel composite foams with multi-stage networks for electromagnetic shielding. Compos Commun, 2020, 21: 100416

    Article  Google Scholar 

  76. Wang XX, Shu JC, Cao WQ, et al. Eco-mimetic nanoarchitecture for green EMI shielding. Chem Eng J, 2019, 369: 1068–1077

    Article  CAS  Google Scholar 

  77. Song P, Ma Z, Qiu H, et al. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett, 2022, 14: 51

    Article  CAS  Google Scholar 

  78. Wang S, Xu J, Li W, et al. Magnetic nanostructures: Rational design and fabrication strategies toward diverse applications. Chem Rev, 2022, 122: 5411–5475

    Article  CAS  Google Scholar 

  79. Liu Y, Zeng Z, Zheng S, et al. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Compos Part B-Eng, 2022, 235: 109800

    Article  CAS  Google Scholar 

  80. Yang X, Fan S, Li Y, et al. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos Part A-Appl Sci Manufacturing, 2020, 128: 105670

    Article  CAS  Google Scholar 

  81. Li J, Yang S, Jiao P, et al. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon, 2020, 157: 427–436

    Article  CAS  Google Scholar 

  82. Wang X, Lu Y, Zhu T, et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem Eng J, 2020, 388: 124317

    Article  CAS  Google Scholar 

  83. Wang H, Ma H. Highly enhanced electromagnetic wave absorption bandwidth based on reduced graphene oxide-Fe aerogel composites. Nanotechnology, 2019, 31: 095711

    Article  Google Scholar 

  84. Wan Z, Shu R, Zhang J, et al. Synthesis of three-dimensional porous nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogel as lightweight and high-performance electromagnetic wave absorbers. Diamond Relat Mater, 2021, 112: 108245

    Article  CAS  Google Scholar 

  85. Lv H, Li Y, Jia Z, et al. Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos Part B-Eng, 2020, 196: 108122

    Article  CAS  Google Scholar 

  86. Shu R, Wan Z, Zhang J, et al. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl Mater Interfaces, 2020, 12: 4689–4698

    Article  CAS  Google Scholar 

  87. Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti3C2T, MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano, 2021, 15: 6622–6632

    Article  CAS  Google Scholar 

  88. Song Q, Ye F, Kong L, et al. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv Funct Mater, 2020, 30: 2000475

    Article  CAS  Google Scholar 

  89. Qi F, Wang L, Zhang Y, et al. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater Today Phys, 2021, 21: 100512

    Article  CAS  Google Scholar 

  90. Zeng ZH, Wu N, Wei JJ, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett, 2022, 14: 59

    Article  CAS  Google Scholar 

  91. Cheng JB, Wang YQ, Zhang AN, et al. Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon, 2021, 183: 205–215

    Article  CAS  Google Scholar 

  92. Deng L, Zhang J, Shu R. Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers. J Colloid Interface Sci, 2021, 602: 282–290

    Article  CAS  Google Scholar 

  93. Sun F, Liu Q, Xu Y, et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance. Chem Eng J, 2021, 415: 128976

    Article  CAS  Google Scholar 

  94. Zhao Y, Zuo X, Guo Y, et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett, 2021, 13: 144

    Article  CAS  Google Scholar 

  95. Yan W, Lien HL, Koel BE, et al. Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environ Sci-Processes Impacts, 2013, 15: 63–77

    Article  CAS  Google Scholar 

  96. Zhao H, Cheng Y, Lv H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon, 2019, 142: 245–253

    Article  CAS  Google Scholar 

  97. Lv W, Wen F, **ang J, et al. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta, 2015, 176: 533–541

    Article  CAS  Google Scholar 

  98. Wang H, Meng F, Li J, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustain Chem Eng, 2018, 6: 11801–11810

    Article  CAS  Google Scholar 

  99. Zhou X, Jia Z, Feng A, et al. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon, 2019, 152: 827–836

    Article  CAS  Google Scholar 

  100. Yang X, Pang X, Cao M, et al. Efficient microwave absorption induced by hierarchical pores of reed-derived ultralight carbon materials. Industrial Crops Products, 2021, 171: 113814

    Article  CAS  Google Scholar 

  101. Aslam MA, Ding W, ur Rehman S, et al. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl Surf Sci, 2021, 543: 148785

    Article  CAS  Google Scholar 

  102. Gu W, Sheng J, Huang Q, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett, 2021, 13: 102

    Article  CAS  Google Scholar 

  103. Wu Z, Meng Z, Yao C, et al. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption. Mater Chem Phys, 2022, 275: 125246

    Article  CAS  Google Scholar 

  104. Wang J, Zhou M, **e Z, et al. Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. J Colloid Interface Sci, 2022, 612: 146–155

    Article  CAS  Google Scholar 

  105. Zhou X, Jia Z, Feng A, et al. Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos Commun, 2020, 21: 100404

    Article  Google Scholar 

  106. Sun X, Wang Z, Wang S, et al. Ultrabroad-band and low-frequency microwave absorption based on activated waxberry metamaterial. Chem Eng J, 2021, 422: 130142

    Article  CAS  Google Scholar 

  107. Hou Y, Quan J, Su X, et al. Carbonized silk fiber mat: A flexible and broadband microwave absorber, and the length effect. ACS Sustain Chem Eng, 2021, 9: 12747–12754

    Article  CAS  Google Scholar 

  108. Rong H, Gao T, Zhang Y, et al. Carbonized fibers with multi-elemental do** and hollow architecture derived from natural cotton for tunable microwave absorption properties. J Alloys Compd, 2021, 884: 161084

    Article  CAS  Google Scholar 

  109. Huang F, Wang S, Ding W, et al. Sulfur-doped biomass-derived hollow carbon microtubes toward excellent microwave absorption performance. J Mater Sci-Mater Electron, 2021, 32: 6260–6268

    Article  CAS  Google Scholar 

  110. Ji C, Liu Y, Xu J, et al. Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J Alloys Compd, 2022, 890: 161834

    Article  CAS  Google Scholar 

  111. Cui J, Wang X, Huang L, et al. Environmentally friendly bark-derived Co-doped porous carbon composites for microwave absorption. Carbon, 2022, 187: 115–125

    Article  CAS  Google Scholar 

  112. Lou Z, Wang Q, Sun W, et al. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chem Eng J, 2022, 430: 133178

    Article  CAS  Google Scholar 

  113. Zhou X, Jia Z, Feng A, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber. Compos Part B-Eng, 2020, 192: 107980

    Article  CAS  Google Scholar 

  114. Song G, Yang K, Gai L, et al. ZIF-67/CMC-derived 3D N-doped hierarchical porous carbon with in-situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption. Compos Part A-Appl Sci Manufacturing, 2021, 149: 106584

    Article  CAS  Google Scholar 

  115. He Y, **e P, Li S, et al. Multifunctional carbon foam with hollow microspheres and a concave-convex microstructure for adjustable electromagnetic wave absorption and wearable applications. J Mater Chem A, 2021, 9: 25982–25998

    Article  CAS  Google Scholar 

  116. Xu J, Zhang X, Zhao Z, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small, 2021, 17: 2102032

    Article  CAS  Google Scholar 

  117. Motojima S, Noda Y, Hoshiya S, et al. Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region. J Appl Phys, 2003, 94: 2325–2330

    Article  CAS  Google Scholar 

  118. Zhao S, Gao Z, Chen C, et al. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon, 2016, 98: 196–203

    Article  CAS  Google Scholar 

  119. Sun G, Yao K, Liu Z, et al. A study on measuring the electromagnetic parameters of chiral materials. J Phys D-Appl Phys, 1998, 31: 2109–2111

    Article  CAS  Google Scholar 

  120. Zhuang Y, Wen J, Tang N, et al. High-temperature ferromagnetism of helical carbon nanotubes. AIP Adv, 2013, 3: 052112

    Article  Google Scholar 

  121. Wu F, Yang K, Li Q, et al. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon, 2021, 173: 918–931

    Article  CAS  Google Scholar 

  122. Fang Y, Xue W, Zhao R, et al. Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe3O4/C composite: A small-angle neutron scattering study. J Mater Chem C, 2020, 8: 319–327

    Article  CAS  Google Scholar 

  123. Li Z, Li H, Ying T, et al. What is the important factor affecting microwave absorption performance in corncob-derived carbon/Ni composites? J Phys D-Appl Phys, 2021, 54: 365005

    Article  CAS  Google Scholar 

  124. Wang L, Shi X, Zhang J, et al. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J Mater Sci Tech, 2020, 52: 119–126

    Article  CAS  Google Scholar 

  125. Wang YY, Zhou ZH, Zhu JL, et al. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos Part B-Eng, 2021, 220: 108985

    Article  CAS  Google Scholar 

  126. Bai T, Guo Y, Wang D, et al. A resilient and lightweight bacterial cellulose-derived C/rGO aerogel-based electromagnetic wave absorber integrated with multiple functions. J Mater Chem A, 2021, 9: 5566–5577

    Article  CAS  Google Scholar 

  127. Zhang W, Zhang X, Zheng Y, et al. Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl Nano Mater, 2018, 1: 5865–5875

    Article  CAS  Google Scholar 

  128. Zhang D, Liang S, Chai J, et al. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J Phys Chem Solids, 2019, 134: 77–82

    Article  CAS  Google Scholar 

  129. Dong Y, Zhu X, Pan F, et al. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem Eng J, 2021, 426: 131272

    Article  CAS  Google Scholar 

  130. Zhang X, Cai L, **ang Z, et al. Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions. Carbon, 2021, 184: 514–525

    Article  CAS  Google Scholar 

  131. Huang X, Liu X, Jia Z, et al. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv Compos Hybrid Mater, 2021, 4: 1398–1412

    Article  CAS  Google Scholar 

  132. Lyu L, Wang F, Zhang X, et al. CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon, 2021, 172: 488–496

    Article  CAS  Google Scholar 

  133. Lyu L, Wang F, Li B, et al. Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. J Colloid Interface Sci, 2021, 586: 613–620

    Article  CAS  Google Scholar 

  134. Dai S, Cheng Y, Quan B, et al. Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: A new exploration. Nanoscale, 2018, 10: 6945–6953

    Article  CAS  Google Scholar 

  135. Liang X, Quan B, Ji G, et al. Tunable dielectric performance derived from the metal-organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain Chem Eng, 2017, 5: 10570–10579

    Article  CAS  Google Scholar 

  136. Zhang X, Tian X, Liu C, et al. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon, 2022, 194: 257–266

    Article  CAS  Google Scholar 

  137. Lyu L, Zheng S, Wang F, et al. High-performance microwave absorption of MOF-derived Co3O4@N-doped carbon anchored on carbon foam. J Colloid Interface Sci, 2021, 602: 197–206

    Article  CAS  Google Scholar 

  138. Shi HG, Wang T, Cheng JB, et al. Ultralow-density carbon foam composites with bean-like Co-embedded carbon nanotube whiskers towards high-performance microwave absorption. J Alloys Compd, 2021, 863: 158090

    Article  CAS  Google Scholar 

  139. Li B, Mao B, Wang X, et al. Novel, hierarchical SiC nanowire-reinforced SiC/carbon foam composites: Lightweight, ultrathin, and highly efficient microwave absorbers. J Alloys Compd, 2020, 829: 154609

    Article  CAS  Google Scholar 

  140. Zhao Y, Zhang Y, Li R, et al. Facile synthesis of ultralight and porous melamine-formaldehyde (MF) resin-derived magnetic graphite-like C3N4/carbon foam with electromagnetic wave absorption behavior. Crystals, 2020, 10: 656

    Article  CAS  Google Scholar 

  141. Lou Z, Li R, Wang P, et al. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem Eng J, 2020, 391: 123571

    Article  CAS  Google Scholar 

  142. Liu P, Gao S, Chen C, et al. Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon, 2020, 169: 276–287

    Article  CAS  Google Scholar 

  143. Ye Z, Wang K, Li X, et al. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials. J Alloys Compd, 2022, 893: 162396

    Article  CAS  Google Scholar 

  144. Liu Y, Fan E, Hou R, et al. A simple synthesis of magnetic metal implanted hierarchical porous carbon networks for efficient microwave absorption. J Mater Chem C, 2021, 9: 14866–14875

    Article  CAS  Google Scholar 

  145. Zhao Y, Lou Z, Wang Q, et al. Thermal phase transition controlling electromagnetic wave absorption behavior of PAN fiber derived porous magnetic absorber. J Mater Sci-Mater Electron, 2021, 32: 26007–26020

    Article  CAS  Google Scholar 

  146. Wang Y, Zhang Y, Tao J, et al. Co0.2Fe2.8O4/C composite nanofibers with designable 3D hierarchical architecture for high-performance electromagnetic wave absorption. Ceramics Int, 2021, 47: 23275–23284

    Article  CAS  Google Scholar 

  147. Qiao J, Zhang X, Liu C, et al. Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption. Carbon, 2022, 191: 525–534

    Article  CAS  Google Scholar 

  148. Zheng S, Zeng Z, Qiao J, et al. Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption. Compos Part A-Appl Sci Manufact, 2022, 155: 106814

    Article  CAS  Google Scholar 

  149. Zhao J, Zhang J, Wang L, et al. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2−C fillers and their silicone rubber wave-absorbing composites. Compos Part A-Appl Sci Manufact, 2020, 129: 105714

    Article  CAS  Google Scholar 

  150. Cheng Y, Zhao H, Lv H, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv Electron Mater, 2020, 6: 1900796

    Article  CAS  Google Scholar 

  151. Zhao J, Zhang J, Wang L, et al. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos Commun, 2020, 22: 100486

    Article  Google Scholar 

  152. Li S, Fan Y, Li X, et al. Ultralight hard carbon nanotubes nanofiber foam/epoxy nanocomposites for comprehensive microwave absorption performance. Polym Compos, 2021, 42: 4673–4683

    Article  CAS  Google Scholar 

  153. Zeng Z, Wang C, Wu T, et al. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J Mater Chem A, 2020, 8: 17969–17979

    Article  CAS  Google Scholar 

  154. Li K, Sun H, Yuan H, et al. Three-dimensional architectures assembled with branched metal nanoparticle-encapsulated nitrogen-doped carbon nanotube arrays for absorption of electromagnetic wave. J Alloys Compd, 2020, 821: 153267

    Article  CAS  Google Scholar 

  155. Yang L, Yin L, Hong C, et al. Strong and thermostable hydrothermal carbon coated 3D needled carbon fiber reinforced silicon-boron carbonitride composites with broadband and tunable high-performance microwave absorption. J Colloid Interface Sci, 2021, 582: 270–282

    Article  CAS  Google Scholar 

  156. Zhao X, Dong S, Hong C, et al. Precursor infiltration and pyrolysis cycle-dependent microwave absorption and mechanical properties of lightweight and antioxidant carbon fiber felts reinforced silicon oxycarbide composites. J Colloid Interface Sci, 2020, 568: 106–116

    Article  CAS  Google Scholar 

  157. Qian J, Shui A, He C, et al. Multifunction properties of SiOC reinforced with carbon fiber and in-situ SiC nanowires. Ceramics Int, 2021, 47: 8004–8013

    Article  CAS  Google Scholar 

  158. Liu P, Zhu C, Gao S, et al. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon, 2020, 163: 348–359

    Article  CAS  Google Scholar 

  159. Yin J, Ma W, Gao Z, et al. A model for predicting electromagnetic wave absorption of 3D bidirectional angle-interlock woven fabric. Polym Testing, 2021, 100: 107272

    Article  CAS  Google Scholar 

  160. Zeng Z, Qiao J, Zhang R, et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, doi: https://doi.org/10.1002/smm2.1118

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFB3502500), the Natural Science Foundation of Shandong Province (2022HYYQ-014 and ZR2016BM16), the Provincial Key Research and Development Program of Shandong (2019JZZY010312), the New 20 Funded Programs for University of **an (2021GXRC036), Shenzhen Municipal Special Fund for Guiding Local Scientific and Technological Development (China 2021Szvup071), the Joint Laboratory Project of Electromagnetic Structure Technology (637-2022-70-F-037), and Qilu Young Scholar Program of Shandong University (31370082163127).

Author information

Authors and Affiliations

Authors

Contributions

Liu J and Zeng Z proposed the topic and outline of the manuscript; Han M collected the related information and drafted the manuscript; Liu J, Zeng Z, Yang Y, and Liu W gave some valuable comments and polished the manuscript.

Corresponding authors

Correspondence to Zhihui Zeng  (曾志辉) or Jiurong Liu  (刘久荣).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Mingrui Han received his master’s degree from Shanghai University in 2021. Now he works at Shandong University. His current research interest focuses on electromagnetic wave absorbing materials.

Zhihui Zeng received his PhD degree in materials science and engineering from the National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences, Bei**g, China in 2016. Following his work as a postdoctoral research fellow at Nanyang Technological University, Singapore and Swiss Federal Laboratories for Materials Science and Technology (Empa), he currently works at the School of Materials Science and Engineering, Shandong University, **an, China. His research interests include the design, fabrication and application of polymer-based nanocomposites, nanostructured assemblies, and cellular materials.

Jiurong Liu obtained his PhD degree from Osaka University in 2004. Then, he worked as a postdoctoral fellow at UCLA until 2008, before beginning his career as a full professor in materials science at Shandong University. His research interests are the synthesis of hybrid nanomaterials for energy storage and their electromagnetic applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Yang, Y., Liu, W. et al. Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption. Sci. China Mater. 65, 2911–2935 (2022). https://doi.org/10.1007/s40843-022-2153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2153-7

Keywords

Navigation