Log in

Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions

硫掺杂SnS2-SnO2纳米异质结镶嵌的C3N4多孔纳米片 提高电荷转移和光催化还原CO2性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Two-dimensional porous nanosheet heterostructure materials, which combine the advantages of both architecture and components, are expected to feature a significant photocatalytic performance toward CO2 conversion into useful fuels. Herein, we provide a facile strategy for fabricating sulfur-doped C3N4 porous nanosheets with embedded SnO2-SnS2 nanojunctions (S-C3N4/SnO2-SnS2) via liquid impregnation-pyrolysis and subsequent sulfidation treatment using a layered supramolecular structure as the precursor of C3N4. A hexagonal layered supramolecular structure was first prepared as the precursor of C3N4. Then Sn4+ ions were intercalated into the supramolecular interlayers through the liquid impregnation method. The subsequent annealing treatment in air simultaneously realized the fabrication and efficient exfoliation of layered C3N4 porous nanosheets. Moreover, SnO2 nanoparticles were formed and embedded in situ in the porous C3N4 nanosheets. In the following sulfidation process under a nitrogen atmosphere, sulfur powder can react with SnO2 nanoparticles to form SnO2-SnS2 nanojunctions. As expected, the exfoliation of sulfur-doped C3N4 porous nanosheets and ternary heterostructure construction could be simultaneously achieved in this work. Sulfur-doped C3N4 porous nanosheets with embedded SnO2-SnS2 nanojunctions featured abundant active sites, enhanced visible light absorption, and efficient interfacial charge transfer. As expected, the optimized S-C3N4/SnO2-SnS2 achieved a much higher gas-phase photocatalytic CO2 reduction performance with high yields of CO (21.68 μmolg−1 h−1) and CH4 (22.09 μmolg−1 h−1) compared with the control C3N4, C3N4/SnO2, and S-C3N4/SnS2 photocatalysts. The selectivity of CH4 reached 80.30%. Such a promising synthetic strategy can be expected to inspire the design of other robust C3N4-based porous nanosheet heterostructures for a broad range of applications.

摘要

结合了多孔纳米片和异质结优点的二维多孔纳米片异质结构材 料预计能在CO2光催化还原为燃料过程中表现出优异的性能. 本文中, 我们提出了一种简便的合成方案, 即通过液体浸渍-热解和后续的硫化 处理, 将层状结构的超分子前驱体转变成C3N4, 形成了硫掺杂的原位嵌 入的SnO2-SnS2纳米异质结C3N4多孔纳米片(S-C3N4/SnO2-SnS2). 在这 项研究中, 硫掺杂的C3N4多孔纳米片的剥离和SnO2-SnS2纳米异质结同 时获得. SnO2-SnS2纳米异质结的硫掺杂C3N4多孔纳米片具有丰富的活 性位点、增**的可见光吸收能力和界面电荷转移效率. **如预期, 与 C3N4, C3N4/SnO2和S-C3N4/SnS2光催化剂相比, 优化的S-C3N4/SnO2-SnS2具有更高的气相光催化还原CO2性能, CO产率(21.68 μmol g−1 h−1) 和CH4产率(22.09 μmol g−1 h−1)显著提高. CH4的选择性可达80.30%. 这 种合成策略有望推动其他C3N4基多孔纳米片异质结构的研究, 以实现 更广泛的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang MQ, Gao M, Hong M, et al. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv Mater, 2018, 30: 1802894

    Article  Google Scholar 

  2. Tilley SD. Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv Energy Mater, 2019, 9: 1802877

    Article  Google Scholar 

  3. Jayakumar J, Chou HH. Recent advances in visible-light-driven hydrogen evolution from water using polymer photocatalysts. Chem-CatChem, 2020, 12: 689–704

    CAS  Google Scholar 

  4. Marques Mota F, Kim DH. From CO2 methanation to ambitious long-chain hydrocarbons: Alternative fuels paving the path to sustainability. Chem Soc Rev, 2019, 48: 205–259

    Article  CAS  Google Scholar 

  5. Chen G, Waterhouse GIN, Shi R, et al. From solar energy to fuels: Recent advances in light-driven C1 chemistry. Angew Chem Int Ed, 2019, 58: 17528–17551

    Article  CAS  Google Scholar 

  6. Zhang W, Mohamed AR, Ong WJ. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew Chem Int Ed, 2020, 59: 22894–22915

    Article  CAS  Google Scholar 

  7. Wang C, Sun Z, Zheng Y, et al. Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A, 2019, 7: 865–887

    Article  CAS  Google Scholar 

  8. Patil SB, Basavarajappa PS, Ganganagappa N, et al. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int J Hydrogen Energy, 2019, 44: 13022–13039

    Article  CAS  Google Scholar 

  9. Liu Y, Shen D, Zhang Q, et al. Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface. Appl Catal B-Environ, 2021, 283: 119630

    Article  CAS  Google Scholar 

  10. Rui N, Zhang X, Zhang F, et al. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Appl Catal B-Environ, 2021, 282: 119581

    Article  CAS  Google Scholar 

  11. Yoon HJ, Hyun Yang J, Park SJ, et al. Photocatalytic CO2 reduction and hydrogen production over Pt/Zn-embedded β-Ga2O3 nanorods. Appl Surf Sci, 2021, 536: 147753

    Article  CAS  Google Scholar 

  12. Li X, Jiang H, Ma C, et al. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl Catal B-Environ, 2021, 283: 119638

    Article  CAS  Google Scholar 

  13. Zhao Y, Zhang S, Shi R, et al. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater Today, 2020, 34: 78–91

    Article  CAS  Google Scholar 

  14. Tabish A, Varghese AM, Wahab MA, et al. Perovskites in the energy grid and CO2 conversion: Current context and future directions. Catalysts, 2020, 10: 95

    Article  CAS  Google Scholar 

  15. Ma B, Zhao J, Ge Z, et al. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci China Mater, 2020, 63: 258–266

    Article  CAS  Google Scholar 

  16. Yu H, Ma H, Wu X, et al. One-step realization of crystallization and cyano-group generation for g-C3N4 photocatalysts with improved H2 production. Sol RRL, 2021, 5: 2000372

    Article  CAS  Google Scholar 

  17. Wang M, Cheng J, Wang X, et al. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin J Catal, 2021, 42: 37–45

    Article  Google Scholar 

  18. Li Y, Li X, Zhang H, et al. Design and application of active sites in g-C3N4-based photocatalysts. J Mater Sci Tech, 2020, 56: 69–88

    Article  CAS  Google Scholar 

  19. **a Y, Cheng B, Fan J, et al. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci China Mater, 2020, 63: 552–565

    Article  CAS  Google Scholar 

  20. Hou H, Zeng X, Zhang X. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci China Mater, 2020, 63: 2119–2152

    Article  CAS  Google Scholar 

  21. Li Y, Sun Y, Dong F, et al. Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. J Colloid Interface Sci, 2014, 436: 29–36

    Article  CAS  Google Scholar 

  22. **a P, Antonietti M, Zhu B, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv Funct Mater, 2019, 29: 1900093

    Article  Google Scholar 

  23. Han C, Li J, Ma Z, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci China Mater, 2018, 61: 1159–1166

    Article  CAS  Google Scholar 

  24. Yu H, Xu J, Gao D, et al. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci China Mater, 2020, 63: 2215–2227

    Article  CAS  Google Scholar 

  25. Wang Z, Hu X, Zou G, et al. Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustain Energy Fuels, 2019, 3: 611–655

    Article  CAS  Google Scholar 

  26. Yang Y, Yang XA, Leng D, et al. Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr (VI) under visible light. Chem Eng J, 2018, 335: 491–500

    Article  CAS  Google Scholar 

  27. Ren Y, Zeng D, Ong WJ. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin J Catal, 2019, 40: 289–319

    Article  CAS  Google Scholar 

  28. Xu S, Zhao Y, Sun X, et al. Introduction of porous structure via facile carbon-dot modulation: A feasible and promising approach for improving the photocatalytic capability of sulfur doped g-C3N4. Catal Today, 2019, 335: 502–510

    Article  CAS  Google Scholar 

  29. Sun C, Zhang H, Liu H, et al. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Appl Catal B-Environ, 2018, 235: 66–74

    Article  CAS  Google Scholar 

  30. Chen J, Wang Z, Lee H, et al. Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density. Mater Today Phys, 2020, 12: 100176

    Article  Google Scholar 

  31. Fu J, Yu J, Jiang C, et al. g-C3N4-based heterostructured photocatalysts. Adv Energy Mater, 2018, 8: 1701503

    Article  Google Scholar 

  32. Ong WJ, Putri LK, Mohamed AR. Rational design of carbon-based 2D nanostructures for enhanced photocatalytic CO2 reduction: A dimensionality perspective. Chem Eur J, 2020, 26: 9710–9748

    Article  CAS  Google Scholar 

  33. Guo H, Ding J, Wan S, et al. Highly efficient CH3OH production over Zn0.2Cd0.8S decorated g-C3N4 heterostructures for the photoreduction of CO2. Appl Surf Sci, 2020, 528: 146943

    Article  CAS  Google Scholar 

  34. Sun Z, Wang H, Wu Z, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal Today, 2018, 300: 160–172

    Article  CAS  Google Scholar 

  35. Akhundi A, Habibi-Yangjeh A, Abitorabi M, et al. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev, 2019, 61: 595–628

    Article  CAS  Google Scholar 

  36. Acharya R, Parida K. A review on TiO2/g-C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation. J Environ Chem Eng, 2020, 8: 103896

    Article  CAS  Google Scholar 

  37. Vu NN, Kaliaguine S, Do TO. Synthesis of the g-C3N4/CdS nanocomposite with a chemically bonded interface for enhanced sunlight-driven CO2 photoreduction. ACS Appl Energy Mater, 2020, 3: 6422–6433

    Article  CAS  Google Scholar 

  38. Jiang Z, Wan W, Li H, et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater, 2018, 30: 1706108

    Article  Google Scholar 

  39. He Y, Zhang L, Fan M, et al. Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol Energy Mater Sol Cells, 2015, 137: 175–184

    Article  CAS  Google Scholar 

  40. Di T, Zhu B, Cheng B, et al. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J Catal, 2017, 352: 532–541

    Article  CAS  Google Scholar 

  41. You F, Wan J, Qi J, et al. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew Chem Int Ed, 2020, 59: 721–724

    Article  CAS  Google Scholar 

  42. Jiao X, Li X, ** X, et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J Am Chem Soc, 2017, 139: 18044–18051

    Article  CAS  Google Scholar 

  43. **ao Y, Tian G, Li W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J Am Chem Soc, 2019, 141: 2508–2515

    Article  CAS  Google Scholar 

  44. Guo S, Deng Z, Li M, et al. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photo-catalytic hydrogen evolution. Angew Chem Int Ed, 2016, 55: 1830–1834

    Article  CAS  Google Scholar 

  45. Liu H, Chen Y, Li H, et al. Achieving cadmium selenide-decorated zinc ferrite@titanium dioxide hollow core/shell nanospheres with improved light trap** and charge generation for photocatalytic hydrogen generation. J Colloid Interface Sci, 2020, 575: 158–167

    Article  CAS  Google Scholar 

  46. Zhu K, Lv Y, Liu J, et al. Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance. J Alloys Compd, 2019, 802: 13–18

    Article  CAS  Google Scholar 

  47. Shin H, Jung WG, Kim DH, et al. Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 hetero-junction trap**. ACS Nano, 2020, 14: 11394–11405

    Article  CAS  Google Scholar 

  48. Huo Y, Yang Y, Dai K, et al. Construction of 2D/2D porous graphitic C3N4/SnS2 composite as a direct Z-scheme system for efficient visible photocatalytic activity. Appl Surf Sci, 2019, 481: 1260–1269

    Article  CAS  Google Scholar 

  49. Wang X, He Y, Xu L, et al. SnO2 particles as efficient photocatalysts for organic dye degradation grown in-situ on g-C3N4 nanosheets by microwave-assisted hydrothermal method. Mater Sci Semicond Process, 2021, 121: 105298

    Article  CAS  Google Scholar 

  50. Wu J, Zhang Y, Zhou J, et al. Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting. Appl Catal B-Environ, 2020, 278: 119301

    Article  CAS  Google Scholar 

  51. Liu C, Dong Z, Yu C, et al. Study on photocatalytic performance of hexagonal SnS2/g-C3N4 nanosheets and its application to reduce U(VI) in sunlight. Appl Surf Sci, 2021, 537: 147754

    Article  CAS  Google Scholar 

  52. Cui S, Li R, Pei J, et al. Automobile exhaust purification over g-C3N4 catalyst material. Mater Chem Phys, 2020, 247: 122867

    Article  CAS  Google Scholar 

  53. Xu J, Gan YL, Pei JJ, et al. Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl-functionalized graphitic carbon nitride materials. Mol Catal, 2020, 491: 110979

    Article  CAS  Google Scholar 

  54. Liu G, Li Z, Shi J, et al. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. Appl Catal B-Environ, 2020, 260: 118134

    Article  CAS  Google Scholar 

  55. Wu H, Yuan C, Chen R, et al. Mechanisms of interfacial charge transfer and photocatalytic NO oxidation on BiOBr/SnO2 p-n heterojunctions. ACS Appl Mater Interfaces, 2020, 12: 43741–43749

    Article  CAS  Google Scholar 

  56. Shown I, Samireddi S, Chang YC, et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat Commun, 2018, 9: 169

    Article  Google Scholar 

  57. **a P, Zhu B, Yu J, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A, 2017, 5: 3230–3238

    Article  CAS  Google Scholar 

  58. Lv H, Huang Y, Koodali RT, et al. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution. ACS Appl Mater Interfaces, 2020, 12: 12656–12667

    Article  CAS  Google Scholar 

  59. Han D, Jiang B, Feng J, et al. Photocatalytic self-doped SnO2−x nanocrystals drive visible-light-responsive color switching. Angew Chem Int Ed, 2017, 56: 7792–7796

    Article  CAS  Google Scholar 

  60. Chen D, Huang S, Huang R, et al. Construction of Ni-doped SnO2-SnS2 heterojunctions with synergistic effect for enhanced photodegradation activity. J Hazard Mater, 2019, 368: 204–213

    Article  CAS  Google Scholar 

  61. Dong Y, Ghuman KK, Popescu R, et al. Tailoring surface frustrated Lewis pairs of In2O3−x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3+. Adv Sci, 2018, 5: 1700732

    Article  Google Scholar 

  62. Sun L, Li R, Zhan W, et al. Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nat Commun, 2019, 10: 2270

    Article  Google Scholar 

  63. Tseng IH, Chang WC, Wu JCS. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl Catal B-Environ, 2002, 37: 37–48

    Article  CAS  Google Scholar 

  64. Yu H, Huang H, Reshak AH, et al. Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Appl Catal B-Environ, 2021, 284: 119709

    Article  CAS  Google Scholar 

  65. Zhu A, Qiao L, Tan P, et al. Interfaces of graphitic carbon nitride-based composite photocatalysts. Inorg Chem Front, 2020, 7: 4754–4793

    Article  CAS  Google Scholar 

  66. Moghaddam AO, Trofimov EA. Toward expanding the realm of high entropy materials to platinum group metals: A review. J Alloys Compd, 2021, 851: 156838

    Article  Google Scholar 

  67. Li A, Cao Q, Zhou G, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew Chem Int Ed, 2019, 58: 14549–14555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22072037 and 51772079) and the Natural Science Foundation of Heilongjiang Province of China (LH2020B018).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Tian G and Chen Y designed the project; Chen X and Liu X performed the experiments; Li L and Du L performed the data analysis; Tian G, Chen Y and Chen X wrote the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yajie Chen  (陈亚杰) or Guohui Tian  (田国辉).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

** new photocatalysts for CO2 reduction.

Guohui Tian received his BSc degree in chemistry from Heilongjiang University in 1998. In 2008, he received his PhD degree in inorganic chemistry from Heilongjiang University. Then he worked at Heilongjiang University. He is currently a researcher at Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University. His research interests focus on energy-related inorganic functional materials.

Supplementary Information

40843_2021_1744_MOESM1_ESM.pdf

Boosted Charge Transfer and Photocatalytic CO2 Reduction over Sulfur-Doped C3N4 Porous Nanosheets with Embedded SnS2-SnO2 Nanojunctions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, Y., Liu, X. et al. Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions. Sci. China Mater. 65, 400–412 (2022). https://doi.org/10.1007/s40843-021-1744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1744-5

Keywords