Log in

Cation ratio and oxygen defects for engineering the magnetic transition of monodisperse nonstoichiometric zinc ferrite nanoparticles

非化学计量比锌铁氧体中阳离子比与氧缺陷对其磁性转变的调控研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Monodisperse nonstoichiometric zinc ferrite nanoparticles with a tunable size of 4.1–32.2 nm are fabricated via thermal decomposition. An extrinsic impurity phase of the ZnO component is present in the zinc ferrite nanoparticles with a size of <10 nm, but this phase can be eliminated after the air annealing treatment. The atom ratio of Zn/Fe and concentration of oxygen vacancies decrease as the particle size of zinc ferrite increases, causing magnetic transition from superparamagnetism to ferromagnetism. The X-ray magnetic circular dichroism spectra reveal that the spin magnetic moments of Fe3+ are reduced, and the orbital magnetic moments are frozen with the increasing atom ratio of Zn/Fe. Therefore, saturation magnetization decreases. The saturation magnetizations of all the zinc ferrite nanoparticles decrease after the air annealing treatment, suggesting that oxygen vacancies considerably influence the magnetic properties. The air annealing treatment can minimize the number of oxygen defects, which trigger some of the Fe3+-OV-Fe3+ ferrimagnetic couplings to transfer into the Fe3+-O2−-Fe3+ antiferromagnetic couplings. This work provides new insights regarding the magnetic performance of spinel ferrites by tuning the stoichiometric ratio and oxygen defects.

摘要

本文采用热解法制备了粒径在4.1–32.2 nm范围内可调的单分散非化学计量比锌铁氧体纳米颗粒. 当颗粒尺寸小于10 nm时, 样品中含有少量的非本征ZnO杂质相, 且空气退火后该杂质相消失. 锌铁氧体中锌/铁原子比与氧缺陷浓度均随着颗粒尺寸的增大而降低, 导致其从超顺磁性转变为铁磁性. 磁性圆二色谱表明, 随着Zn/Fe比的增加, Fe3+的自旋磁矩减小, 轨道磁矩冻结, 饱和磁化**度降低. 经过空气退火, 所有样品的饱和磁化**度降低, 表明氧缺陷(OV)对其磁性有很大影响. 空气退火会降低氧缺陷含量, 部分Fe3+–OV–Fe3+铁磁耦合转变为Fe3+–O2−–Fe3+反铁磁耦合. 该工作通过调控化学计量比和氧缺陷实现了对锌铁氧体磁性的调节, 为理解和调控铁氧体的磁学性质提供了新的思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. **ong QQ, Tu JP, Shi SJ, et al. Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties. J Power Sources, 2014, 256: 153–159

    Article  CAS  Google Scholar 

  2. Bigham A, Foroughi F, Motamedi M, et al. Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications. Ceramics Int, 2018, 44: 11798–11806

    Article  CAS  Google Scholar 

  3. Liao W, Zhou G. Conditions for magnetic and electronic properties of ultrathin Ni-Fe hydroxide nanosheets as catalysts: a DFT+U study. Sci China Mater, 2017, 60: 664–673

    Article  CAS  Google Scholar 

  4. Daffé N, Gavrilov V, Neveu S, et al. Small CoFe2O4 magnetic nanoparticles in ferrofluids, influence of the synthesis on the magnetic anisotropies. J Magn Magn Mater, 2019, 477: 226–231

    Article  Google Scholar 

  5. Zheng X, Feng J, Zong Y, et al. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J Mater Chem C, 2015, 3: 4452–4463

    Article  CAS  Google Scholar 

  6. He DX, Qiu Y, Li LL, et al. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci China Mater, 2015, 58: 566–573

    Article  CAS  Google Scholar 

  7. Maiti D, Saha A, Devi PS. Surface modified multifunctional ZnFe2O4 nanoparticles for hydrophobic and hydrophilic anticancer drug molecule loading. Phys Chem Chem Phys, 2016, 18: 1439–1450

    Article  CAS  Google Scholar 

  8. Wang S, Sun Z, Hou Y. Engineering nanoparticles toward the modulation of emerging cancer immunotherapy. Adv Healthcare Mater, 2020, 9: 2000845

    Google Scholar 

  9. Zhu K, Ju Y, Xu J, et al. Magnetic nanomaterials: chemical design, synthesis, and potential applications. Acc Chem Res, 2018, 51: 404–413

    Article  CAS  Google Scholar 

  10. Morrish AH. The Physical Principle of Magnetism. New York: IEEE Press, 2001

    Book  Google Scholar 

  11. Dionne GF. Magnetic Oxides. New York: S**er-Verlag, LLC, 2009

    Book  Google Scholar 

  12. Kodama RH, Berkowitz AE, McNiff Jr. EJ, et al. Surface spin disorder in ferrite nanoparticles. Mater Sci Forum, 1996, 235–238: 643–650

    Article  Google Scholar 

  13. Yadav RS, Havlica J, Masilko J, et al. Structural, cation distribution, and magnetic properties of CoFe2O4 spinel ferrite nanoparticles synthesized using a starch-assisted sol-gel auto-combustion method. J Supercond Nov Magn, 2015, 28: 1851–1861

    Article  CAS  Google Scholar 

  14. Yang Y, Liu X, Yang Y, et al. Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J Mater Chem C, 2013, 1: 2875

    Article  CAS  Google Scholar 

  15. Nath BK, Chakrabarti PK, Das S, et al. Mössbauer, X-ray diffraction and AC susceptibility studies on nanoparticles of zinc substituted magnesium ferrite. Eur Phys J B, 2004, 39: 417–425

    Article  CAS  Google Scholar 

  16. Smit J, Wijn HPJ. Ferrites. Philips Technical Library, Eindhoven, Netherland, 1959

    Google Scholar 

  17. Schiessl W, Potzel W, Karzel H, et al. Magnetic properties of the ZnFe2O4 spinel. Phys Rev B, 1996, 53: 9143–9152

    Article  CAS  Google Scholar 

  18. Yao C, Zeng Q, Goya GF, et al. ZnFe2O4 nanocrystals: Synthesis and magnetic properties. J Phys Chem C, 2007, 111: 12274–12278

    Article  CAS  Google Scholar 

  19. Néel L. Superparamagnétisme des grains très fins antiferromagnétiques. Compt Rend, 1961, 252: 4075

    Google Scholar 

  20. Yelenich OV, Solopan SO, Kolodiazhnyi TV, et al. Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles. Mater Chem Phys, 2014, 146: 129–135

    Article  CAS  Google Scholar 

  21. Fang Z, Zhang L, Qi H, et al. Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium-ion batteries. J Alloys Compd, 2018, 762: 480–487

    Article  CAS  Google Scholar 

  22. Zhang Y, Wu Y, Qin Q, et al. A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4. J Magn Magn Mater, 2016, 409: 6–9

    Article  CAS  Google Scholar 

  23. Ismail M, Hao A, Huang W, et al. Coexistence of unipolar and bipolar switching in nanocrystalline spinel ferrite ZnFe2O4 thin films synthesized by sol-gel method. Appl Phys Lett, 2018, 113: 152103

    Article  Google Scholar 

  24. Park J, Porter MD, Granger MC. Silica encapsulation of ferrimagnetic zinc ferrite nanocubes enabled by layer-by-layer polyelectrolyte deposition. Langmuir, 2015, 31: 3537–3545

    Article  CAS  Google Scholar 

  25. Rozman M, Drofenik M. Hydrothermal synthesis of manganese zinc ferrites. J Am Ceramic Soc, 1995, 78: 2449–2455

    Article  CAS  Google Scholar 

  26. Blanco-Gutierrez V, Saez-Puche R, Torralvo-Fernandez MJ. Superparamagnetism and interparticle interactions in ZnFe2O4 nanocrystals. J Mater Chem, 2012, 22: 2992

    Article  CAS  Google Scholar 

  27. Singh JP, Kaur B, Sharma A, et al. Mechanistic insights into the interaction between energetic oxygen ions and nanosized ZnFe2O4: XAS-XMCD investigations. Phys Chem Chem Phys, 2018, 20: 12084–12096

    Article  CAS  Google Scholar 

  28. Rodríguez Torres CE, Golmar F, Ziese M, et al. Evidence of defect-induced ferromagnetism in ZnFe2O4 thin films. Phys Rev B, 2011, 84: 064404

    Article  Google Scholar 

  29. Salcedo Rodríguez KL, Stewart SJ, Mendoza Zélis PM, et al. Role of defects on the magnetic behaviour of the geometrically frustrated spinel ZnFe2O4. J Alloys Compd, 2018, 752: 289–295

    Article  Google Scholar 

  30. Zviagin V, Kumar Y, Lorite I, et al. Ellipsometric investigation of ZnFe2O4 thin films in relation to magnetic properties. Appl Phys Lett, 2016, 108: 131901

    Article  Google Scholar 

  31. Sahu BN, Suresh KG, Venkataramani N, et al. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films. AIP Adv, 2018, 8: 056118

    Article  Google Scholar 

  32. Sapna #, Budhiraja N, Kumar V, et al. Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceramics Int, 2019, 45: 1067–1076

    Article  CAS  Google Scholar 

  33. Zhao H, Liu R, Zhang Q, et al. Effect of surfactant amount on the morphology and magnetic properties of monodisperse ZnFe2O4 nanoparticles. Mater Res Bull, 2016, 75: 172–177

    Article  CAS  Google Scholar 

  34. Xue H, Li Z, Wang X, et al. Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method. Mater Lett, 2007, 61: 347–350

    Article  CAS  Google Scholar 

  35. Han JK, Choi HJ. Non-stoichiometric zinc-doped spinel ferrite nanoparticles with enhanced magnetic property and their magnetorheology. Colloid Polym Sci, 2018, 296: 405–409

    Article  CAS  Google Scholar 

  36. Seetha Rama Raju V. Synthesis of non-stoichiometric zinc ferrite for electromagnetic wave absorber applications. Mater Sci Eng-B, 2017, 224: 88–92

    Article  CAS  Google Scholar 

  37. Venkateshvaran D, Althammer M, Nielsen A, et al. Epitaxial ZnxFe3xO4 thin films: A spintronic material with tunable electrical and magnetic properties. Phys Rev B, 2009, 79: 134405

    Article  Google Scholar 

  38. Makovec D, Drofenik M. Non-stoichiometric zinc-ferrite spinel nanoparticles. J Nanopart Res, 2008, 10: 131–141

    Article  CAS  Google Scholar 

  39. Gao XC, Ma XX, Kang X, et al. Oxidative absorption of NO by sodium persulfate coupled with Fe2+, Fe3O4, and H2O2. Environ Prog Sustain Energy, 2015, 34: 117–124

    Article  CAS  Google Scholar 

  40. Motaung DE, Mhlongo GH, Nkosi SS, et al. Shape-selective dependence of room temperature ferromagnetism induced by hierarchical ZnO nanostructures. ACS Appl Mater Interfaces, 2014, 6: 8981–8995

    Article  CAS  Google Scholar 

  41. Sun Y, Zong Y, Feng J, et al. Oxygen vacancies driven size-dependent d0 room temperature ferromagnetism in well-dispersed dopant-free ZnO nanoparticles and density functional theory calculation. J Alloys Compd, 2018, 739: 1080–1088

    Article  CAS  Google Scholar 

  42. Topkaya R, Baykal A, Demir A. Yafet-Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J Nanopart Res, 2013, 15: 1359

    Article  Google Scholar 

  43. Zeng X, Zhang J, Zhu S, et al. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties. Nanoscale, 2017, 9: 7493–7500

    Article  CAS  Google Scholar 

  44. Lacorre P, Pannetier J, Pebler J, et al. Ordered magnetic frustration: XVII. is BaMnFeF7 frustrated? Mössbauer spectroscopy, magnetic susceptibility, and magnetic structure at 2 K. J Solid State Chem, 1992, 101: 296–308

    Article  CAS  Google Scholar 

  45. Felner I, Yaron U, Nowik I, et al. New magnetic phases in the La-Sr-Cu-O system. Physica C-Supercond, 1992, 198: 14–18

    Article  CAS  Google Scholar 

  46. Bedanta S, Kleemann W. Supermagnetism. J Phys D-Appl Phys, 2009, 42: 013001

    Article  Google Scholar 

  47. Pérez N, Bartolomé F, García LM, et al. Nanostructural origin of the spin and orbital contribution to the magnetic moment in Fe3−xO4 magnetite nanoparticles. Appl Phys Lett, 2009, 94: 093108

    Article  Google Scholar 

  48. Krishnan KM. Fundamentals and Applications of Magnetic Materials. Seattle: Oxford University Press, 2016

    Book  Google Scholar 

  49. Zhang W, Wong PKJ, Zhang D, et al. XMCD and XMCD-PEEM studies on magnetic-field-assisted self-assembled 1D nanochains of spherical ferrite particles. Adv Funct Mater, 2017, 27: 1701265

    Article  Google Scholar 

  50. Antonov VN, Harmon BN, Yaresko AN. Electronic structure and X-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4. Phys Rev B, 2003, 67: 024417

    Article  Google Scholar 

  51. Genuzio F, Menteş TO, Freindl K, et al. Chemistry-dependent magnetic properties at the FeNi oxide-metal interface. J Mater Chem C, 2020, 8: 5777–5785

    Article  CAS  Google Scholar 

  52. Zhu Y, Zhan Q, Yang JC, et al. Enhanced structural and magnetic coupling in a mesocrystal-assisted nanocomposite. ACS Appl Mater Interfaces, 2016, 8: 1104–1111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51572218, 11504293 and 11904275), the Natural Science Foundation of Shaanxi Province (2019JM-138), the Scientific Research Program Funded by Shaanxi Provincial Education Department (18JK0786, 19JK0413 and 20JK0946), and the Key Project of Research and Development of Shaanxi Province (2018ZDCXL-GY-08-05). The staff of Singapore Synchrotron Light Source and beam time from SINS beamline were acknowledged for their assistance.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Sun Y performed the experiments and theoretical calculation; Deng X conducted the STEM characterization and QSTEM analysis; Li X, Peng Y, and Zheng X designed the project; Chi X carried out the XMCD characterization and analysis; Zong Y completed the XPS characterization; Deng X and Zhang J performed the EELS analysis; Feng J performed the TEM characterization; Shi Z performed the magnetic analysis; Sun Y, Li X, and Zheng X wrote the draft of manuscript; Li X and Zheng X revised the manuscript. All authors contributed to the general discussion and checked the manuscript.

Corresponding authors

Correspondence to **nghua Li  (**兴华), **ao Chi  (池啸) or Yong Peng  (彭勇).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Yong Sun received his BSc degree from Northwest University in 2011. He is currently a PhD candidate at the School of Physics, Northwest University. He was an exchange student of Nanyang Technological University (NTU) in Singapore (November 2019-April 2020). His research focuses on magnetic materials and microwave absorption materials.

** magneto-related instruments and in situ electron microscopes and characterizing the microstructures and dynamical behaviors of low-dimensional magnetic materials and devices.

Electronic supplementary material

40843_2020_1592_MOESM1_ESM.pdf

Cation ratio and oxygen defects for engineering the magnetic transition of monodisperse nonstoichiometric zinc ferrite nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Deng, X., Zong, Y. et al. Cation ratio and oxygen defects for engineering the magnetic transition of monodisperse nonstoichiometric zinc ferrite nanoparticles. Sci. China Mater. 64, 2017–2028 (2021). https://doi.org/10.1007/s40843-020-1592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1592-y

Keywords