Log in

Significant broadband extinction abilities of bioaerosols

生物气溶胶具有显著的宽带消光能力

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Bioaerosol, an important constituent of the atmosphere, can directly affect light radiation characteristics due to absorption and scattering effects. Current research lacks a reasonable explanation for the extinction abilities of bioaerosols in a broadband. Herein, we measured the reflectance spectra of 12 common biomaterials and calculated their complex refractive indexes. The peaks of the imaginary part of the complex refractive indexes are located at wavelengths of approximately 0.7, 2.7, 6.1 and 9.5 μm. Based on photographs of the floating structures of bioaerosols, we constructed a model for calculating the extinction abilities of bioaerosols in the wavelength range of 240 nm to 14 μm. Taking AN02 spores as an example, absorption was found to account for more than 90% of the total extinction. In addition, the theoretical calculations and experimental data of transmittance corresponding to the smoke box show that bioaerosol exhibits significant broadband extinction ability from UV to IR bands, which provides new directions for the development of broadband light attenuation materials.

中文摘要

生物气溶胶是大气的重要组成部分, 因其吸收和散射效应, 可直接影响光辐射特性. 当前对于生物气溶胶是否具有宽波段消光特性 的研究还不够充分. 本文中, 我们测量了12种常见生物材料在240 nm–14 μm波段内的反射光谱, 并结合K-K算法计算了不同生物气溶胶材 料的复折射率. 我们发现, 不同种质生物气溶胶的吸收峰具有共性, 位于约0.7, 2.7, 6.1和9.5 μm处. 基于烟幕箱中生物气溶胶漂浮状态实际 结构的照片, 我们构建了模型计算240 nm–14 μm波长范围内生物气溶胶的消光能力. 以AN02孢子为例, 我们发现吸收作用占AN02孢子群 消光总量的90%以上. 此外, 我们对比了生物气溶胶理论计算透过率与大型烟幕箱实测透射率数据, 理论计算和实验验证都显示生物气溶 胶在紫外到红外波段具有显著的宽波段消光能力. 这一发现为宽波段消光材料的发展提供了新的研究方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical MicroBiol Rev, 2007, 20: 459–477

    Article  Google Scholar 

  2. Gilbert Y, Duchaine C. Bioaerosols in industrial environments: a review. Can J Civ Eng, 2009, 36: 1873–1886

    Article  Google Scholar 

  3. Liu W, Zhu X, Lei M, et al. A detailed procedure for CRISPR/Cas9- mediated gene editing in Arabidopsis thaliana. Sci Bull, 2015, 60: 1332–1347

    Article  Google Scholar 

  4. Wei K, Zheng Y, Li J, et al. Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions. Sci Bull, 2015, 60: 1439–1447

    Article  Google Scholar 

  5. Castillo JA, Staton SJR, Taylor TJ, et al. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal Bioanal Chem, 2012, 403: 15–26

    Article  Google Scholar 

  6. Fröhlich-Nowoisky J, Kampf CJ, Weber B, et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos Res, 2016, 182: 346–376

    Article  Google Scholar 

  7. Van Leuken JPG, Swart AN, Havelaar AH, et al. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock—A review to inform risk assessment studies. Microbial Risk Anal, 2016, 1: 19–39

    Article  Google Scholar 

  8. Kenny CM, Jennings SG. Background bioaerosol measurements at mace head. J Aerosol Sci, 1998, 29: S779–S780

    Article  Google Scholar 

  9. Reid JP, Bertram AK, Top** DO, et al. The viscosity of atmospherically relevant organic particles. Nat Commun, 2018, 9: 956

    Article  Google Scholar 

  10. Després VR, Huffman JA, Burrows SM, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B-Chem Phys Meteor, 2012, 64: 15598

    Article  Google Scholar 

  11. Matthias-Maser S, Obolkin V, Khodzer T, et al. Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmos Environ, 2000, 34: 3805–3811

    Article  Google Scholar 

  12. Jaenicke R. Abundance of cellular material and proteins in the atmosphere. Science, 2005, 308: 73

    Article  Google Scholar 

  13. Huffman JA, Sinha B, Garland RM, et al. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos Chem Phys, 2012, 12: 11997–12019

    Article  Google Scholar 

  14. Crutzen PJ. Geology of mankind. Nature, 2002, 415: 23

    Article  Google Scholar 

  15. Adams KF, Hyde HA, Williams DA. Woodlands as a source of allergens. Allergy, 1968, 23: 265–281

    Article  Google Scholar 

  16. Spänkuch D, Döhler W, Güldner J. Effect of coarse biogenic aerosol on downwelling infrared flux at the surface. J Geophys Res, 2000, 105: 17341–17350

    Article  Google Scholar 

  17. Guyon P, Graham B, Roberts GC, et al. Sources of optically active aerosol particles over the Amazon forest. Atmos Environ, 2004, 38: 1039–1051

    Article  Google Scholar 

  18. Makogon MM. Comparative analysis of spectroscopic methods for remote diagnostics of bioaerosols. Atmos Ocean Opt, 2011, 24: 123–132

    Article  Google Scholar 

  19. Christesen SD, Merrow CN, Desha MS, et al. Ultraviolet fluorescence lidar detection of bioaerosols. SPIE Proc, 1994, 2222: 228–237

    Article  Google Scholar 

  20. Yabushita S, Wada K, Takai T, et al. A spectroscopic study of the microorganism model of interstellar grains. Astrophys Space Sci, 1986, 124: 377–388

    Article  Google Scholar 

  21. Wickramasinghe NC, Wallis MK, Al-Mufti S, et al. The organic nature of cometary grains. Earth Moon Planet, 1988, 40: 101–108

    Article  Google Scholar 

  22. Hoyle F, Wickramasinghe NC, Al-Mufti S. The ultraviolet absorbance of presumably interstellar bacteria and related matters. Astrophys Space Sci, 1985, 111: 65–78

    Article  Google Scholar 

  23. Ligon DA, Wetmore AE, Gillespie PS. Simulation of the passive infrared spectral signatures of bioaerosol and natural fog clouds immersed in the background atmosphere. Opt Express, 2002, 10: 909

    Article  Google Scholar 

  24. Gittins CM, Piper LG, Rawlins WT, et al. Passive and active standoff infrared detection of bio-aerosols. Field Analyt Chem Technol, 1999, 3: 274–282

    Article  Google Scholar 

  25. Gurton KP, Ligon D, Kvavilashvili R. Measured infrared spectral extinction for aerosolized Bacillus subtilis var niger endospores from 3 to 13 µm. Appl Opt, 2001, 40: 4443–4448

    Article  Google Scholar 

  26. Yabushita S, Wada K. The infrared and ultraviolet absorptions of micro-organisms and their relation to the Hoyle-Wickramashinghe hypothesis. Astrophys Space Sci, 1985, 110: 405–411

    Article  Google Scholar 

  27. Wang P, Liu H, Zhao Y, et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band. Appl Spectrosc, 2016, 70: 1456–1463

    Article  Google Scholar 

  28. Liu H, Wang P, Hu Y, et al. Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production. Biocontrol Sci Tech, 2015, 25: 1011–1023

    Article  Google Scholar 

  29. Liu H, Zhao X, Guo M, et al. Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol, 2015, 15: 267–279

    Article  Google Scholar 

  30. Segal-Rosenheimer M, Linker R. Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers–Kronig transform. J Quantitative Spectr Radiative Transfer, 2009, 110: 1147–1161

    Article  Google Scholar 

  31. Booij HC, Thoone GPJM. Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta, 1982, 21: 15–24

    Article  Google Scholar 

  32. Grosse P, Offermann V. Analysis of reflectance data using the Kramers-Kronig relations. Appl Phys A, 1991, 52: 138–144

    Article  Google Scholar 

  33. Poelman D, Frederic Smet P. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J Phys D-Appl Phys, 2003, 36: 1850–1857

    Article  Google Scholar 

  34. Zhao X, Hu Y, Gu Y. The infrared spectral transmittance of Aspergillus Niger spore aggregated particle swarm. SPIE Proc, 2015, 9678: 1717

    Google Scholar 

  35. Sun D, Hu Y, Gu Y, et al. Determination and model construction of microbes’ complex refractive index in far infrared band. Acta Phys Sin, 2013, 62: 268–276

    Google Scholar 

  36. Li L, Hu Y, Chen W, et al. Measurement and analysis on complex refraction indices of pear pollen in infrared band. Spectrosc Spectr Anal, 2015, 35: 89–92

    Google Scholar 

  37. Sun D, Hu Y, Wang Y, et al. Sub-microstructures’ influences on cell’s scattering prosperities. Acta Phot Sin, 2013, 42: 710–714

    Article  Google Scholar 

  38. Sun D, Hu Y, Gu Y, et al. Preparation and performance testing of metallic biologic particles. Acta Phot Sin, 2013, 42: 555–558

    Article  Google Scholar 

  39. Sun D, Hu Y, Li L. Test and analysis of infrared and microwave characteristics of metallic farinas. Infrared Laser Eng, 2013, 42: 2531–2535

    Google Scholar 

  40. Gu Y, Wang C, Yang L, et al. Infrared extinction before and after Aspergillus niger spores inactivation. Infrared Laser Eng, 2015, 44: 36–41

    Google Scholar 

  41. Li L, Hu Y, Gu Y, et al. Infrared extinction performance of Aspergillus niger spores. Infrared Laser Eng, 2014, 43: 2176–2180

    Google Scholar 

  42. Li L, Hu Y, Gu Y, et al. Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials. Appl Spectrosc, 2017, 71: 2555–2562

    Article  Google Scholar 

  43. Gu Y, Hu Y, Zhao X, et al. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3–5 micrometers. Opt Express, 2018, 26: 15842

    Article  Google Scholar 

  44. Zhao X, Hu Y, Gu Y. Transmittance of laser in the microorganism aggregated particle Swarm. Acta Optica Sin, 2015, 35: 222–228

    Google Scholar 

  45. Yurkin MA, Hoekstra AG. The discrete dipole approximation: An overview and recent developments. J Quantitat Spectr Rad Transfer, 2007, 106: 558–589

    Article  Google Scholar 

  46. Li C, **ong H. 3D simulation of the Cluster–Cluster aggregation model. Comput Phys Commun, 2014, 185: 3424–3429

    Article  Google Scholar 

  47. Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A, 1994, 11: 1491–1499

    Article  Google Scholar 

  48. Flatau PJ, Draine BT. Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt Express, 2012, 20: 1247–1252

    Article  Google Scholar 

  49. Kinnunen M, Kauppila A, Karmenyan A, et al. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level. Biomed Opt Express, 2011, 2: 1803

    Article  Google Scholar 

  50. Dong J, Zhao JM, Liu LH. Effect of spine-like surface structures on the radiative properties of microorganism. J Quantit Spectr Radiat Transfer, 2016, 173: 49–64

    Article  Google Scholar 

  51. Lee E, Heng RL, Pilon L. Spectral optical properties of selected photosynthetic microalgae producing biofuels. J Quantit Spectr Radiat Transfer, 2013, 114: 122–135

    Article  Google Scholar 

  52. Lattuada M, Wu H, Morbidelli M. Radial density distribution of fractal clusters. Chem Eng Sci, 2004, 59: 4401–4413

    Article  Google Scholar 

  53. Kozasa T, Blum J, Okamoto H, et al. Optical properties of dust aggregates I. Wavelength dependence. Astron Astrophys, 1992, 263: 423–432

    Google Scholar 

  54. Kozasa T, Blum J, Okamoto H, et al. Optical properties of dust aggregates II. Angular dependence of scattered light. Astron Astrophys, 1993, 276: 278–288

    Google Scholar 

  55. Min M, Dominik C, Hovenier JW, et al. The 10m amorphous silicate feature of fractal aggregates and compact particles with complex shapes. Astron Astrophys, 2006, 445: 1005–1014

    Article  Google Scholar 

  56. Huang C, Wu Z, Liu Y, et al. Effect of porosity on optical properties of aerosol aggregate particles. Acta Optica Sin, 2013, 33: 129001

    Article  Google Scholar 

  57. Draine BT. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J, 1988, 333: 848–872

    Article  Google Scholar 

  58. Jacques SL. Modeling tissue optics-using Monte Carlo modeling a tutorial. SPIE Proc, 2008, 6854: 1–9

    Google Scholar 

  59. Wang L, Jacques SL, Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed, 1995, 47: 131–146

    Article  Google Scholar 

  60. Zhao X, Hu Y, Gu Y, et al. Transmittance of laser in the microorganism aggregated particle swarm. Acta Phot Sin, 2015, 35: 0616001

    Google Scholar 

  61. Liu J, Zeng Y, Yang C. Light scattering study of biological cells with the discrete dipole approximation. Infrared Laser Eng, 2014, 43: 2204–2208

    Google Scholar 

  62. ** S, Chen H. Near-infrared analysis of the chemical composition of rice straw. Industrial Crops Products, 2007, 26: 207–211

    Article  Google Scholar 

  63. Cao S, Zhao Y. Application of molecular absorption spectrophotometric method to the determination of biologic macromolecular structures. Spectrosc Spect Anal, 2004, 24: 1197–1201

    Google Scholar 

  64. Lin X, Pan Y, Guo Y, et al. The study of cervical cancer cells model based on UV absorption spectrum. Spectrosc Spect Anal, 2009, 29: 2547–2550

    Google Scholar 

  65. Susi H, Byler DM. Fourier transform infrared study of proteins with parallel β-chains. Archives Biochem Biophys, 1987, 258: 465–469

    Article  Google Scholar 

  66. Li D, Yan C, Hu F, et al. Studied on simulation spectra of protein secondary structures by two-dimensional infrared correlation spectroscopy. J Light Scatt, 2013, 25: 417–422

    Google Scholar 

  67. Saito I, Sugiyama H, Matsuura T. Photochemical reactions of nucleic acids and their constituents of photobiological relevance. Photochem Photobiol, 1983, 38: 735–743

    Article  Google Scholar 

  68. del Pozo JM, Díaz L. A comparison of methods for the determination of optical constants of thin films. Thin Solid Films, 1992, 209: 137–144

    Article  Google Scholar 

  69. Li J, An W, Zhu T. The development of measurement and calculation model of the medium complex-refractive index. Energy Conserv Technol, 2017, 35: 214–219

    Article  Google Scholar 

  70. Zhong D, Wang L, Yu Y. Optical constants measurement of thin film by spectrophotometry. J Liaoning Univ Natl Sci Ed, 1996, 23: 1–13

    Google Scholar 

  71. Pekker D. A method for determining thickness and optical constants of absorbing thin films. Thin Solid Films, 2003, 425: 203–209

    Article  Google Scholar 

  72. Wu Q. Ellipsometry of measuring for optical constant of an absorbing film. J Zhejiang Univ, 1982, 16: 1–7

    Google Scholar 

  73. Li C. Absorption and scattering of optical films. J Applied Optics, 1982, 3: 3–13

    Google Scholar 

  74. Bailey GF, Karp S, Sacks LE. Ultraviolet-absorption spectra of dry bacterial spores. J Bacteriol, 1965, 99: 984–987

    Google Scholar 

  75. Inagaki T. Optical absorptions of aliphatic amino acids in the far ultraviolet. Biopolymers, 1973, 12: 1353–1362

    Article  Google Scholar 

  76. Tuminello PS, Arakawa ET, Khare BN, et al. Optical properties of Bacillus subtilis spores from 0.2 to 25 µm. Appl Opt, 1997, 36: 2818–2824

    Article  Google Scholar 

  77. Arakawa ET, Tuminello PS, Khare BN, et al. Optical properties of horseradish peroxidase from 0.13 to 2.5 µm. Biospectroscopy, 1997, 3: 73–80

    Article  Google Scholar 

  78. Emerson LC, Williams MW, Tang I, et al. Optical properties of guanine from 2 to 82 eV. Radiat Res, 1975, 63: 235–244

    Article  Google Scholar 

  79. Hill SC, Doughty DC, Pan YL, et al. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria: errata. Opt Express, 2014, 22: 22817

    Article  Google Scholar 

  80. Yabushita S, Wada K, Inagaki T, et al. Photometric and photo accoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis. Astrophys Space Sci, 1985, 117: 401–406

    Article  Google Scholar 

  81. Hoyle F, Wickramasinghe NC, Al-Mufti S. The measurement of the absorption properties of dry micro-organisms and its relationship to astronomy. Astrophys Space Sci, 1985, 113: 413–416

    Article  Google Scholar 

  82. Draine BT, Flatau PJ. User Guide for the Discrete Dipole Approximation Code. DDSCAT 7.3, 2013

    Google Scholar 

Download references

Acknowledgements

We thank Professor B. T. Draine of Princeton University for providing the main program of DDA. This work was supported by the National Natural Science Foundation of China (61271353 and 60908033), and the Natural Science Foundation of Anhui Province (1408085MKL47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nying Zhao  (赵欣颖).

Additional information

Yihua Hu received his BSc degree in radar engineering from the Electronic Engineering Institute of PLA (1983), MSc degree in circuits and systems from **'an University of Electronic Science and Technology (1988), and PhD degree in optics from Anhui Institute of Optics and Mechanics, Chinese Academy of Sciences (1997). He is now a professor of optical engineering at the National University of Defense Technology. His research interests include spatial information acquisition and processing technology, laser detection and imaging technology and photoelectric information and image processing.

**nying Zhao received her BSc degrees in information engineering and MSc in optical engineering from the National University of Defense Technology. She is now a PhD candidate at the National University of Defense Technology. Her research interests include the interaction of light and matter, particle scattering and functional materials.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhao, X., Gu, Y. et al. Significant broadband extinction abilities of bioaerosols. Sci. China Mater. 62, 1033–1045 (2019). https://doi.org/10.1007/s40843-018-9411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9411-9

Keywords

Navigation