Log in

Quasilinear Schrödinger Equations with a Singular Operator and Critical or Supercritical Growth

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We consider the following singular quasilinear Schrödinger equations involving critical exponent

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\Delta u-\frac{\alpha }{2}\Delta (|u|^{\alpha })|u|^{\alpha -2}u=\theta |u|^{k-2}u+|u|^{2^{*}-2}u+\lambda f(u), x\in \Omega ,\\ \hspace{1.65in}u=\,0, x\in \partial \Omega , \end{array} \right. \end{aligned}$$

where \(0<\alpha <1\). By using the variational methods, we first prove that for small values of \(\lambda \) and \(\theta \), the above problem has infinitely many distinct solutions with negative energy. Besides, we point out that odd assumption on f is required; the problem has at least one nontrivial solution. Finally, a new modified technique is used to consider the existence of infinitely many solutions for far more general equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used for the research described in the article.

References

  1. Adachi, S., Watanabe, T.: Uniqueness of the ground state solutions of quasilinear Schrödinger equations. Nonlinear Anal. 75, 819–833 (2012)

    Article  MathSciNet  Google Scholar 

  2. Adachi, S., Watanabe, T.: G-invariant positive solutions for a quasilinear Schrödinger equation. Adv. Differ. Equ. 16, 289–324 (2011)

    Google Scholar 

  3. Adachi, S., Masataka, S., Watanabe, T.: Blow-up phenomena and asymptotic profiles of ground states of quasilinear Schrödinger equations with H1-supercritical nonlinearities. J. Differ. Equ. 256, 1492–1514 (2014)

    Article  Google Scholar 

  4. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 401–411 (1994)

    Article  MathSciNet  Google Scholar 

  5. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point thoery and application. J. Funct. Anal. 14, 349–381 (1973)

    Article  Google Scholar 

  6. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    Google Scholar 

  7. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  8. Costa, D., Wang, Z.-Q.: Multiplicity results for a class of superlinear elliptic problems. Proc. Amer. Math. Soc. 133, 787–794 (2005)

    Article  MathSciNet  Google Scholar 

  9. Deng, Y.B., Peng, S.J., Yan, S.S.: Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differ. Equ. 260, 1228–1262 (2016)

    Article  Google Scholar 

  10. Gasinski, L., Papageorgiou, N.: A Pair of positive solutions for p-q-equations with combined nonlinearities. Commun. Pure. Appl. Anal. 13, 203–215 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Japan 50, 3262–3267 (1981)

    Article  Google Scholar 

  12. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. Part 1. Rev. Mat. Iberoam. 1,145-201 (1985)

  13. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. Part 2. Rev. Mat. Iberoam. 2, 45-121 (1985)

  14. Liu, J.Q., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations I. Proc. Amer. Math. Soc. 131, 441–448 (2002)

    Article  Google Scholar 

  15. Liu, J.Q., Wang, Y.Q., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

    Article  Google Scholar 

  16. Liu, J.Q., Wang, Y.Q., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  Google Scholar 

  17. Liu, H.: Multiple positive solutions for a quasilinear elliptic equation involving singular potential and critical Sobolev exponent. Nonlinear Anal. 71, 1684–1690 (2009)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z.L., Wang, Z.-Q.: On Clark’s theorem and its applications to partially sublinear problems. Ann. Inst. H Poincare Anal. Non Linaire 32, 1015–1037 (2015)

    Article  MathSciNet  Google Scholar 

  19. Rabinowitz, P.H.: Minimax methods in critical points theory with application to differential equations. CBMS Regional Conf. Ser. Math., Vol. 65. Am. Math. Soc., Providence (1986)

  20. Shen, Y.T., Wang, Y.J.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)

    Article  MathSciNet  Google Scholar 

  21. Smyrlis, G., Faraci, F.: On a singular semilinear elliptic problem: multiple solutions via critical point theory. Topol. Meth. Nonlinear Anal. 51, 459–491 (2018)

    MathSciNet  Google Scholar 

  22. Shen, Y.T., Wang, Y.J.: A class of generalized quasilinear Schrödinger equations. Commun. Pure Appl. Anal. 15, 853–870 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wang, Y.J.: Multiplicity of solutions for singular quasilinear Schrödinger equations with critical exponents. J. Math. Anal. Appl. 458, 1027–1043 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y.J., Zhang, Y.M., Shen, Y.T.: Multiple solutions for quasilinear Schrödinger equations involving critical exponent. Appl. Math. Comput. 216, 849–856 (2010)

    MathSciNet  Google Scholar 

  25. Wang, Y.J., Zou, W.M.: Bound states to critical quasilinear Schrödinger equations. Nonlinear Differential Equations Appl. 19, 19–47 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wang, Y.J.: A class of quasilinear Schrodinger equations with critical or supercitical exponents. Comput. Math. Appl. 70, 562–572 (2015)

    Article  MathSciNet  Google Scholar 

  27. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  28. Yin, H.H., Yang, Z.D.: A class of (p, q)-Laplacian type equation with concave-convex nonlinearities in bounded domain. J. Math. Anal. Appl. 382, 843–855 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the unknown referee for valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this paper.

Corresponding author

Correspondence to Chen Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All authors read and approved the final version of the manuscript.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Huang, C. Quasilinear Schrödinger Equations with a Singular Operator and Critical or Supercritical Growth. Bull. Malays. Math. Sci. Soc. 47, 93 (2024). https://doi.org/10.1007/s40840-024-01691-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-024-01691-7

Keywords

Mathematics Subject Classification

Navigation