Log in

Gravitational Effect on Piezo-Thermoelasiticity in the Context of Three Phase Lag Model with Two Temperature

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The main aim of this article is to study the effect of gravity on piezo-thermoelasticity in the context of three phase lag (TPL) model with two-temperature. The governing equations of piezo-thermoelasticity in TPL model with two-temperature in the presence of gravity are solved by Normal mode analysis in half space and we calculate the stress, strain and displacement components. A cadmium selenide material has been considered for the numerical simulation and the result has been plotted graphically. The results obtained for both Lord Shulman (L–S) and TPL thermoelastic models are almost coincident to each other in case of strain, stress tensors and components of displacement but results differ in the case of one components of electric potentials due to the presence of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Mindlin, R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10(6), 625–637 (1974)

    Google Scholar 

  2. Sharma, J.N., Pal, M., Chand, D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. J. Sound Vib. 284(1–2), 227–248 (2005)

    Google Scholar 

  3. Sharma, J.N., Kumar, M.: Plane harmonic waves in piezo-thermoelastic materials (2000)

  4. Othman, M.I., Ahmed, E.A.: Effect of gravity field on piezothermoelastic medium with three theories. J. Therm. Stress. 39(4), 474–486 (2016)

    Google Scholar 

  5. Lu, X., Hanagud, S.V.: Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1582–1592 (2004)

    Google Scholar 

  6. Sharma, M.D.: Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mech. 215, 307–318 (2010)

    Google Scholar 

  7. Othman, M.I., Elmaklizi, Y.D., Ahmed, E.A.: Influence of magnetic field on generalized piezo-thermoelastic rotating medium with two relaxation times. Microsyst. Technol. 23, 5599–5612 (2017)

    Google Scholar 

  8. Mondal, S., Othman, M.I.: Memory dependent derivative effect on generalized piezo-thermoelastic medium under three theories. Waves Random Complex Media 31(6), 2150–2167 (2021)

    MathSciNet  Google Scholar 

  9. Noda, N., Kimura, S.: Deformation of a piezothermoelectric composite plate considering the coupling effect. J. Therm. Stress. 21(3–4), 359–379 (1998)

    Google Scholar 

  10. Ashida, F., Tauchert, T.R.: A finite difference scheme for inverse transient piezothermoelasticity problems. J. Therm. Stress. 21(3–4), 271–293 (1998)

    Google Scholar 

  11. Jabbari, M., Yooshi, A.: Theory of generalized piezoporo thermoelasticity. J. Solid Mech. (2012)

  12. Dai, H.L., Wang, X.: Magneto–thermo–electro–elastic transient response in a piezoelectric hollow cylinder subjected to complex loadings. Int. J. Solids Struct. 43(18–19), 5628–5646 (2006)

    Google Scholar 

  13. Abd-Alla, A.E.N., Hamdan, A.M., Elhaes, H., Ibrahim, M.: Mathematical analysis of the reflection phenomenon of longitudinal waves at nano anisotropic thermo-piezoelectric medium. J. Comput. Theor. Nanosci. 11(11), 2329–2338 (2014)

    Google Scholar 

  14. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Google Scholar 

  15. Green, A.E., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Google Scholar 

  16. Chandrasekharaiah, D.S., Srikantaiah, K.R.: On temperature-rate dependent thermoelastic Rayleigh waves in a half-space with material boundary. Gerlands Beiträge zur Geophysik 93(2), 133–141 (1984)

    Google Scholar 

  17. Wojnar, R.: Rayleigh waves in thermoelasticity with relaxation times. In: International Conference on Surface Waves in Plasma and Solids (pp. 5–11). World Scientific, Singapore (1985)

  18. Sharma, J.N., Kaur, D.: Rayleigh waves in rotating thermoelastic solids with voids. Int. J. Appl. Math. Mech. 6(3), 43–61 (2010)

    Google Scholar 

  19. Sharma, J.N., Kumar, S., Sharma, Y.D.: Effect of micropolarity, microstretch and relaxation times on Rayleigh surface waves in thermoelastic solids. Int. J. Appl. Math. Mech. 5(2), 17–38 (2009)

    Google Scholar 

  20. Stroh, A.: Steady state problems in anisotropic elasticity. J. Math. Phys. 41(1–4), 77–103 (1962)

    MathSciNet  Google Scholar 

  21. Vinh, P.C., Seriani, G.: Explicit secular equations of Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Wave Motion 46(7), 427–434 (2009)

    MathSciNet  Google Scholar 

  22. Choudhuri, S.R.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Google Scholar 

  23. Kumar, R., Chawla, V., Abbas, I.A.: Effect of viscosity on wave propagation in anisotropic thermoelastic medium with three-phase-lag model. Theor. Appl. Mech. 39(4), 313–341 (2012)

    MathSciNet  Google Scholar 

  24. Biswas, S., Mukhopadhyay, B., Shaw, S.: Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J. Therm. Stress. 40(4), 403–419 (2017)

    Google Scholar 

  25. Ahmed, E.A., Abou-Dina, M.S., Ghaleb, A.F., Mahmoud, W.: Numerical solution to a 2D-problem of piezo-thermoelasticity in a quarter-space within the dual-phase-lag model. Mater. Sci. Eng. B 263, 114790 (2021)

    Google Scholar 

  26. Ahmed, E.A., Abou-Dina, M.S., El Dhaba, A.R.: Effect of gravity on piezo-thermoelasticity within the dual-phase-lag model. Microsyst. Technol. 25, 1–10 (2019)

    Google Scholar 

  27. Jani, S.M.H., Kiani, Y.: Symmetric thermo-electro-elastic response of piezoelectric hollow cylinder under thermal shock using Lord-Shulman theory. Int. J. Struct. Stab. Dyn. 20(05), 2050059 (2020)

    MathSciNet  Google Scholar 

  28. Singh, M., Kumari, S.: Influence of gravity and initial stress on Rayleigh wave propagation in magneto-thermoelastic medium. J. Math. Comput. Sci. 11(3), 2681–2698 (2021)

    Google Scholar 

  29. Singh, M., Kumari, S.: Rayleigh waves propagation in orthotropic solids with two temperature in context of thermoelasticity. In: IOP Conference Series: Materials Science and Engineering (vol. 1033, no. 1, p. 012078). IOP Publishing (2021)

  30. Chen, P.J., Gurtin, M.E. On a theory of heat conduction involving two temperatures (1968)

  31. Chen, P.J., Williams, W.O.: A note on non-simple heat conduction. Zeitschrift für angewandte Mathematik und Physik ZAMP 19, 969–970 (1968)

    Google Scholar 

  32. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für angewandte Mathematik und Physik ZAMP 20, 107–112 (1969)

    Google Scholar 

  33. Warren, W.E., Chen, P.J.: Wave propagation in the two temperature theory of thermoelasticity. Acta Mech. 16(1–2), 21–33 (1973)

    Google Scholar 

  34. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71(3), 383–390 (2006)

    MathSciNet  Google Scholar 

  35. Youssef, H.M.: Theory of two-temperature thermoelasticity without energy dissipation. J. Therm. Stress. 34(2), 138–146 (2011)

    Google Scholar 

  36. Youssef, H.M., Elsibai, K.A.: On the theory of two-temperature thermoelasticity without energy dissipation of Green-Naghdi model. Appl. Anal. 94(10), 1997–2010 (2015)

    MathSciNet  Google Scholar 

  37. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23(5), 545–553 (2016)

    Google Scholar 

  38. Kumar, A., Kant, S., Mukhopadhyay, S.: An in-depth investigation on plane harmonic waves under two-temperature thermoelasticity with two relaxation parameters. Math. Mech. Solids 22(2), 191–209 (2017)

    MathSciNet  Google Scholar 

  39. Mukhopadhyay, S., Picard, R., Trostorff, S., Waurick, M.: A note on a two-temperature model in linear thermoelasticity. Math. Mech. Solids 22(5), 905–918 (2017)

    MathSciNet  Google Scholar 

  40. Singh, M., Kumari, S. Rayleigh wave propagation with two temperature and diffusion in context of three phase lag thermoelasticity. J. Ocean Eng. Sci. (2022)

  41. Kaur, I., Lata, P.: Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion. Int. J. Mech. Mater. Eng. 14(1), 1–11 (2019)

    Google Scholar 

  42. Biswas, S., Abo-Dahab, S.: Effect of phase-lags on Rayleigh wave propagation in initially stressed magneto-thermoelastic orthotropic medium. Appl. Math. Model. 59, 713–727 (2018)

    MathSciNet  Google Scholar 

  43. Biswas, S., Mukhopadhyay, B.: Rayleigh surface wave propagation in transversely isotropic medium with three-phase-lag model. J. Solid Mech. 10(1), 175–185 (2018)

    Google Scholar 

  44. Sharma, S., Kumari, S.: Reflection of plane waves in nonlocal fractional-order thermoelastic half space. Int. J. Math. Math. Sci. 2022 (2022)

  45. Said, S.M.: Deformation of a rotating two-temperature generalized-magneto thermoelastic medium with internal heat source due to hydrostatic initial stress. Meccanica 50, 2077–2091 (2015)

    MathSciNet  Google Scholar 

  46. Said, S.M.: Influence of the rotation on a generalized magneto-thermoelastic medium for three-phase-lag model. Multidiscip. Model. Mater. Struct. 11(2), 297–318 (2015)

    MathSciNet  Google Scholar 

  47. Said, S.M.: Two-temperature generalized magneto-thermoelastic medium for dual-phase-lag model under the effect of gravity field and hydrostatic initial stress. Multidiscip. Model. Mater. Struct. 12(2), 362–383 (2016)

    Google Scholar 

  48. Said, S.M.: Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model. J. Comput. Appl. Math. 291, 142–157 (2016)

    MathSciNet  Google Scholar 

  49. Said, S.M.: Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity. Appl. Math. Mech. 41, 819–832 (2020)

    MathSciNet  Google Scholar 

  50. Said, S.M.: A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach. Geomech. Eng. 32(2), 137–144 (2023)

    Google Scholar 

  51. Abouelregal, A.E., Marin, M., Öchsner, A.: The influence of a non-local Moore–Gibson–Thompson heat transfer model on an underlying thermoelastic material under the model of memory-dependent derivatives. Contin. Mech. Thermodyn. 35(2), 545–562 (2023)

    MathSciNet  Google Scholar 

  52. Abouelregal, A.E., Marin, M., Altenbach, H.: Thermally stressed thermoelectric microbeam supported by Winkler foundation via the modified Moore–Gibson–Thompson thermoelasticity theory. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik e202300079 (2023)

  53. Abouelregal, A.E., Askar, S.S., Marin, M.: An axially compressed moving nanobeam based on the nonlocal couple stress theory and the thermoelastic DPL model. Mathematics 11(9), 2155 (2023)

    Google Scholar 

  54. Abouelregal, A.E., Marin, M., Askar, S.S.: Generalized MGT heat transfer model for an electro-thermal microbeam lying on a viscous-pasternak foundation with a laser excitation heat source. Symmetry 15(4), 814 (2023)

    Google Scholar 

  55. Soleiman, A., Abouelregal, A.E., Ahmad, H., Thounthong, P.: Generalized thermoviscoelastic model with memory dependent derivatives and multi-phase delay for an excited spherical cavity. Phys. Scr. 95(11), 115708 (2020)

    Google Scholar 

  56. Abouelregal, A.E., Askar, S.S., Marin, M., Mohamed, B.: The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod. Sci. Rep. 13(1), 9052 (2023)

    Google Scholar 

  57. Abouelregal, A.E., Dargail, H.E.: Memory and dynamic response of a thermoelastic functionally graded nanobeams due to a periodic heat flux. Mech. Based Des. Struct. Mach. 51(4), 2154–2176 (2023)

    Google Scholar 

  58. Abouelregal, A.E.: An advanced model of thermoelasticity with higher-order memory-dependent derivatives and dual time-delay factors. Waves Random Complex Media 32(6), 2918–2939 (2022)

    MathSciNet  Google Scholar 

  59. Zakaria, K., Sirwah, M.A., Abouelregal, A.E., Rashid, A.F.: Photothermoelastic survey with memory-dependent response for a rotating solid cylinder under varying heat flux via dual phase lag model. Pramana 96(4), 219 (2022)

    Google Scholar 

  60. Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transf. 51(1), 24–29 (2008)

    Google Scholar 

  61. Othman, M.I., Zidan, M.E., Mohamed, I.E.: Effect of magnetic field and gravity on two-temperature thermos micro-stretch elastic medium under dual phase lag model. Indian J. Phys. 94(1), 69–79 (2020)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Author 1st has formulated the problem. Author 2nd did the calculation part. Author 3rd has plotted the graphs. And then author 1st checked and verified the paper.

Corresponding author

Correspondence to Sangeeta Kumari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\({\text{A}}_{1} = \frac{{\left( {{\rho c}^{2} - {\text{C}}_{11} } \right){\upalpha }^{2} }}{{{\text{C}}_{44} }}\)

\({\text{A}}_{2} = \frac{{\left( {{\text{C}}_{13} + {\text{C}}_{14} } \right){\text{i}}\upalpha }}{{{\text{C}}_{44} }}\)

\({\text{A}}_{3} = \frac{{\uprho {\text{gi}}\upalpha }}{{{\text{C}}_{44} }}\)

\({\text{ A}}_{4} = \frac{{\left( {e_{31} + e_{15} } \right)i\alpha }}{{C_{44} }}\)

\({\text{A}}_{5} = \frac{{\upbeta _{1} \left( {1 + {\text{a}}^{*} \upalpha ^{2} } \right){\text{i}}\upalpha }}{{{\text{C}}_{44} }}\)

\({\text{A}}_{6} = \frac{{{\text{a}}^{*}\upbeta _{1} {\text{i}}\upalpha }}{{{\text{C}}_{44} }} \)

\({\text{A}}_{7} = \left( {{\text{C}}_{44} + {\text{C}}_{13} } \right){\text{i}}\upalpha \)

\(A_{8} = \rho gi\alpha\)

\(A_{9} = C_{33}\)

\(A_{10} = \left( {\rho c^{2} - C_{44} } \right)\alpha^{2}\)

\({\text{A}}_{11} = {\text{e}}_{33}\)

\(A_{12} = e_{15} \alpha^{2}\)

\(A_{13} = \beta_{3} \left( {1 + a^{*} \alpha^{2} } \right)\)

\({\text{A}}_{14} = {\upbeta }_{3} {\text{a}}^{*}\)

\({\text{A}}_{15} = \left( {{\text{e}}_{15} + {\text{e}}_{31} } \right){\text{i}}\upalpha \)

\(A_{16} = \epsilon_{11} \alpha^{2}\)

\(A_{17} = \epsilon_{33}\)

\(A_{18} = P_{3} (1 + a^{*} \alpha^{2}\))

\(A_{19} = P_{3} a^{*}\)

\( A_{20} = i\alpha^{3} cK_{1} l_{1} - \alpha^{2} l_{2} K_{1}^{*}\)

\({\text{A}}_{21} =\uprho {\text{c}}_{{\text{e}}} \left( {1 + {\text{a}}^{*} \upalpha ^{2} } \right)\upalpha ^{2} {\text{c}}^{2 }\)

\(A_{22} = \rho c_{e} a^{*} \alpha^{2} c^{2}\)

\({\text{A}}_{23} = {\text{K}}_{3}^{*} {\text{l}}_{2} - {\text{iK}}_{3} \upalpha {\text{cl}}_{1}\)

\({\text{A}}_{24} = {\text{T}}_{0}\upbeta _{1} {\text{i}}\upalpha ^{3} {\text{c}}^{2}\)

\(A_{25} = T_{0} \beta_{3} \alpha^{2} c^{2}\)

\( A_{26} = P_{3} \alpha^{2} c^{2}\)

  

Here

$$ {\text{l}}_{1} = \frac{{{\text{l}}_{3} }}{{{\text{l}}_{5} }}\quad {\text{l}}_{2} = \frac{{{\text{l}}_{4} }}{{{\text{l}}_{5} }}\quad {\text{l}}_{3} = 1 - {\text{i}}\upalpha {\text{c}}\uptau _{{\text{T}}} \quad {\text{l}}_{4} = 1 - {\text{i}}\upalpha {\text{c}}\uptau _{{\text{v}}} \quad {\text{l}}_{5} = 1 - {\text{i}}\upalpha {\text{c}}\uptau _{{\text{q}}} - \frac{{\upalpha ^{2} {\text{c}}^{2} }}{2}\uptau _{{\text{q}}}^{2} $$

Appendix B

$$ \begin{aligned} {\text{K}} = & \frac{{{\text{A}}_{9} \left[ {{\text{A}}_{16} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right) - {\text{A}}_{17} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right) + {\text{A}}_{18} {\text{A}}_{26} } \right] + {\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{19} {\text{A}}_{26} {\text{A}}_{10} + {\text{A}}_{11} \left[ {{\text{A}}_{13} {\text{A}}_{26} + {\text{A}}_{18} {\text{A}}_{25} - {\text{A}}_{11} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right)} \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{{\text{A}}_{12} \left[ {{\text{A}}_{19} {\text{A}}_{25} + {\text{A}}_{14} {\text{A}}_{26} } \right] - {\text{A}}_{25} \left[ {{\text{A}}_{13} {\text{A}}_{17} + {\text{A}}_{14} {\text{A}}_{16} } \right] - {\text{A}}_{1} {\text{A}}_{11} {\text{A}}_{23} + {\text{A}}_{1} {\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{19} {\text{A}}_{26} } \right] + {\text{A}}_{1} {\text{A}}_{11}^{2} {\text{A}}_{12} + {\text{A}}_{19} {\text{A}}_{25} }}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{{\text{A}}_{1} {\text{A}}_{14} {\text{A}}_{26} + {\text{A}}_{1} {\text{A}}_{14} {\text{A}}_{17} {\text{A}}_{25} + {\text{A}}_{2} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right) + {\text{A}}_{19} {\text{A}}_{26} } \right] + {\text{A}}_{2} {\text{A}}_{15} \left[ {{\text{A}}_{11} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right) + {\text{A}}_{14} {\text{A}}_{26} } \right] + {\text{A}}_{2} {\text{A}}_{24} \left[ {{\text{A}}_{11} {\text{A}}_{19} - {\text{A}}_{14} {\text{A}}_{17} } \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{{\text{A}}_{4} {\text{A}}_{7} \left[ {{\text{A}}_{11} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{4} {\text{A}}_{9} \left[ {{\text{A}}_{15} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right)} \right] + {\text{A}}_{4} {\text{A}}_{9} {\text{A}}_{19} {\text{A}}_{24} + {\text{A}}_{4} {\text{A}}_{14} \left[ {{\text{A}}_{25} \left( {{\text{A}}_{11} - {\text{A}}_{15} } \right) + {\text{A}}_{6} \left( {{\text{A}}_{11} {\text{A}}_{26} - {\text{A}}_{17} {\text{A}}_{25} } \right)} \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & - \frac{{{\text{A}}_{4} {\text{A}}_{14} \left[ {{\text{A}}_{6} {\text{A}}_{15} {\text{A}}_{9} {\text{A}}_{26} + {\text{A}}_{6} {\text{A}}_{15} {\text{A}}_{11} {\text{A}}_{25} - {\text{A}}_{6} {\text{A}}_{24} \left( {{\text{A}}_{9} {\text{A}}_{17} + {\text{A}}_{11}^{2} } \right)} \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ \end{aligned} $$
$$ \begin{aligned} {\text{L}} =& \frac{{{\text{A}}_{9} {\text{A}}_{16} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right) + {\text{A}}_{10} \left[ {{\text{A}}_{16} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{17} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right) + {\text{A}}_{18} {\text{A}}_{26} } \right] + \left[ {{\text{A}}_{12} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{12} {\text{A}}_{18} {\text{A}}_{25} - {\text{A}}_{13} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right)} \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ &+ \frac{{{\text{A}}_{1} {\text{A}}_{9} \left[ {{\text{A}}_{16} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right) + {\text{A}}_{18} {\text{A}}_{26} - {\text{A}}_{17} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right)} \right] + {\text{A}}_{1} {\text{A}}_{10} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{19} {\text{A}}_{16} } \right] + {\text{A}}_{1} {\text{A}}_{11} \left[ {{\text{A}}_{18} {\text{A}}_{25} - \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right) + {\text{A}}_{13} } \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{{\text{A}}_{1} {\text{A}}_{12} \left[ {{\text{A}}_{19} {\text{A}}_{25} + {\text{A}}_{14} {\text{A}}_{26} } \right] - {\text{A}}_{1} \left[ {{\text{A}}_{25} \left( {{\text{A}}_{13} {\text{A}}_{17} + {\text{A}}_{14} {\text{A}}_{16} } \right)} \right] + {\text{A}}_{2} \left[ {{\text{A}}_{16} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) + {\text{A}}_{17} \left( {{\text{A}}_{20} + {\text{A}}_{31} } \right) - {\text{A}}_{2} {\text{A}}_{7} {\text{A}}_{26} - {\text{A}}_{2} {\text{A}}_{12} {\text{A}}_{15} {\text{A}}_{22} } \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\& + \frac{{{\text{A}}_{2} {\text{A}}_{12} \left[ {{\text{A}}_{15} {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{24} } \right] - \left[ {2{\text{A}}_{15} {\text{A}}_{20} - {\text{A}}_{18} {\text{A}}_{24} } \right] + {\text{A}}_{2} {\text{A}}_{15} {\text{A}}_{26} + {\text{A}}_{2} {\text{A}}_{24} \left[ {{\text{A}}_{14} {\text{A}}_{16} + {\text{A}}_{13} {\text{A}}_{17} } \right] + {\text{A}}_{3} {\text{A}}_{8} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{19} {\text{A}}_{26} } \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{{\text{A}}_{4} {\text{A}}_{7} \left[ {{\text{A}}_{12} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right)} \right] + {\text{A}}_{4} \left[ {{\text{A}}_{11} \left( {{\text{A}}_{20} - {\text{A}}_{21} } \right) + {\text{A}}_{18} {\text{A}}_{25} } \right] + \left[ {{\text{A}}_{15} \left( {{\text{A}}_{20} + {\text{A}}_{21} - {\text{A}}_{22} } \right) + {\text{A}}_{4} {\text{A}}_{15} \left( {{\text{A}}_{10} {\text{A}}_{23} + {\text{A}}_{13} {\text{A}}_{25} } \right) + {\text{A}}_{4} {\text{A}}_{24} {\text{A}}_{10} {\text{A}}_{19} } \right]}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & - \frac{{{\text{A}}_{4} {\text{A}}_{24} {\text{A}}_{9} - {\text{A}}_{4} {\text{A}}_{24} \left( {{\text{A}}_{11} {\text{A}}_{13} + {\text{A}}_{12} {\text{A}}_{14} } \right) + {\text{A}}_{5} \left( {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{11} {\text{A}}_{26} } \right) + {\text{A}}_{5} {\text{A}}_{15} \left( {{\text{A}}_{9} {\text{A}}_{26} + {\text{A}}_{11} {\text{A}}_{25} } \right) - {\text{A}}_{5} {\text{A}}_{24} {\text{A}}_{22} {\text{A}}_{11} {\text{A}}_{24} \left( {{\text{A}}_{9} {\text{A}}_{17} + {\text{A}}_{11}^{2} } \right)}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{{\text{A}}_{6} {\text{A}}_{7} \left( {{\text{A}}_{16} {\text{A}}_{25} - {\text{A}}_{12} {\text{A}}_{26} } \right) + {\text{A}}_{6} {\text{A}}_{15} {\text{A}}_{12} {\text{A}}_{25} - {\text{A}}_{6} {\text{A}}_{15} {\text{A}}_{10} {\text{A}}_{26} - {\text{A}}_{6} {\text{A}}_{24} \left( {{\text{A}}_{10} {\text{A}}_{17} - {\text{A}}_{9} {\text{A}}_{16} - 2{\text{A}}_{11} {\text{A}}_{12} } \right)}}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\\end{aligned} $$
$$ \begin{aligned} {\text{M}} = & \user2{ }\frac{{\left( {{\text{A}}_{10} {\text{A}}_{16} - {\text{A}}_{12}^{2} } \right)\left( {{\text{A}}_{20} + {\text{A}}_{21} } \right) + {\text{A}}_{1} \left[ {{\text{A}}_{9} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right) + {\text{A}}_{10} \left( {{\text{A}}_{23} - {\text{A}}_{22} } \right)} \right] - {\text{A}}_{1} {\text{A}}_{10} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{20} + {\text{A}}_{21} } \right)} \right] + {\text{A}}_{1} {\text{A}}_{18} {\text{A}}_{26} + 2{\text{A}}_{1} {\text{A}}_{11} {\text{A}}_{12} {\text{A}}_{20} }}{{{\text{A}}_{9} \left[ {{\text{A}}_{17} \left( {{\text{A}}_{22} - {\text{A}}_{23} } \right) - {\text{A}}_{11} {\text{A}}_{26} } \right] + {\text{A}}_{11} \left[ {{\text{A}}_{11} {\text{A}}_{12} - {\text{A}}_{23} - {\text{A}}_{19} {\text{A}}_{25} } \right] + {\text{A}}_{14} \left[ {{\text{A}}_{17} {\text{A}}_{25} - {\text{A}}_{14} {\text{A}}_{26} } \right]}} \\ & + \frac{{A_{1} A_{12} \left[ {A_{12} \left( {A_{22} - A_{23} } \right) - A_{18} A_{25} - A_{13} A_{26} } \right] + A_{1} A_{13} A_{16} A_{25} - \left( {A_{20} + A_{21} } \right)A_{2} \left( {A_{7} A_{16} + A_{12} A_{15} } \right) - A_{2} A_{24} \left( {A_{12} A_{18} - A_{13} A_{26} } \right)}}{{A_{9} \left[ {A_{17} \left( {A_{22} - A_{23} } \right) - A_{11} A_{26} } \right] + A_{11} \left[ {A_{11} A_{12} - A_{23} - A_{19} A_{25} } \right] + A_{14} \left[ {A_{17} A_{25} - A_{14} A_{26} } \right]}} \\ & - \frac{{A_{3} A_{8} \left[ {A_{16} \left( {A_{23} - A_{22} } \right)} \right] + A_{3} A_{8} \left( {A_{18} A_{26} - A_{17} A_{20} } \right) + \left( {A_{20} + A_{21} } \right)A_{4} \left( {A_{7} A_{12} + A_{10} A_{15} } \right) + A_{4} A_{24} \left( {A_{12} A_{13} - A_{10} A_{18} } \right) + A_{5} A_{7} A_{12} A_{26} }}{{A_{9} \left[ {A_{17} \left( {A_{22} - A_{23} } \right) - A_{11} A_{26} } \right] + A_{11} \left[ {A_{11} A_{12} - A_{23} - A_{19} A_{25} } \right] + A_{14} \left[ {A_{17} A_{25} - A_{14} A_{26} } \right]}} \\ & + \frac{{A_{5} A_{7} A_{16} A_{25} + A_{5} A_{10} \left( {A_{15} A_{26} - A_{17} A_{24} } \right) + A_{5} A_{12} \left( {2A_{11} A_{24} - A_{15} A_{25} } \right) + A_{5} A_{9} A_{16} A_{24} + A_{6} A_{24} \left( {A_{12}^{2} - A_{10} A_{16} } \right)}}{{A_{9} \left[ {A_{17} \left( {A_{22} - A_{23} } \right) - A_{11} A_{26} } \right] + A_{11} \left[ {A_{11} A_{12} - A_{23} - A_{19} A_{25} } \right] + A_{14} \left[ {A_{17} A_{25} - A_{14} A_{26} } \right]}} \\ \end{aligned} $$
$$ {\text{N}} = \frac{{\left( {A_{10} A_{16} - A_{12}^{2} } \right)\left[ {A_{1} \left( {A_{20} + A_{21} } \right) + A_{5} A_{24} } \right] + A_{3} A_{8} A_{16} \left( {A_{20} + A_{21} } \right)}}{{ A_{9} \left[ {A_{17} \left( {A_{22} - A_{23} } \right) - A_{11} A_{26} } \right] + A_{11} \left[ {A_{11} A_{12} - A_{23} - A_{19} A_{25} } \right] + A_{14} \left[ {A_{17} A_{25} - A_{14} A_{26} } \right]}} $$

Appendix C

$$ \begin{array}{*{20}l} {{\text{f}} = 2\left[ {\frac{{3{\text{K}}^{2} }}{8} - \frac{{3{\text{K}}^{2} }}{4} + {\text{L}}} \right]} \hfill & {u = \sqrt {f^{2} - 3g } } \hfill & {{\text{g}} = \left[ {\frac{{3{\text{K}}^{2} }}{8} - \frac{{3{\text{K}}^{2} }}{4} + {\text{L}}} \right] - 4\left[ {\frac{{{\text{K}}^{4} }}{256} - \frac{{{\text{K}}^{4} }}{64} + \frac{{{\text{K}}^{2} {\text{L}}}}{16} - \frac{{{\text{KM}}}}{4} + {\text{N}}} \right]} \hfill \\ { h = - \left[ { - \frac{{K^{3} }}{16} + \frac{{3K^{2} }}{16} - \frac{KL}{2} + M} \right] } \hfill & {{\text{v}} = \frac{{{\text{sin}}^{ - 1} {\text{w}}}}{3}} \hfill & {{\text{w}} = \frac{{ 2f^{3} - 9fg + 27h}}{{2u^{3} }}} \hfill \\ {t_{1} = \sqrt {\frac{1}{3}\left[ {2usin\left( v \right) - f} \right]} } \hfill & {t_{2} = \sqrt {\frac{1}{3}\left[ { - f - u\left( {\sqrt 3 cosv + sinv} \right)} \right]} } \hfill & { t_{3} = \sqrt {\frac{1}{3}\left[ { - f + u\left( {\sqrt 3 cosv - sinv} \right)} \right]} } \hfill \\ \end{array} $$

Appendix D

$$ \begin{aligned} T_{1n} = & \frac{1}{{q_{1} }}\left[ {r_{1} - \left\{ {\frac{{q_{3} \left( {q_{1} r_{3} - q_{7} r_{1} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - q_{3} \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{1} r_{2} - q_{4} r_{1} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\}} \right. \\ & - \left\{ {\frac{{q_{2} \left( {q_{1} r_{2} - q_{4} r_{1} } \right)\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - q_{2} \left( {q_{1} r_{2} - q_{4} r_{1} } \right)\left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\} \\ & \left. { - \left\{ {\frac{{q_{2} \left( {q_{6} q_{1} - q_{4} q_{3} } \right)\left( {q_{1} r_{3} - q_{7} r_{1} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) + q_{2} \left( {q_{6} q_{1} - q_{4} q_{3} } \right)\left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} r_{1} - q_{4} r_{3} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\}} \right] \\ \end{aligned} $$
$$ \begin{aligned} T_{2n} = & \frac{1}{{\left( {q_{5} q_{1} - q_{4} q_{2} } \right)}}\left[ {\left\{ {\frac{{\left( {q_{1} r_{2} - q_{4} r_{1} } \right)\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\}} \right. \\ & - \left\{ {\frac{{\left( {q_{1} r_{2} - q_{4} r_{1} } \right)\left( {q_{8} q_{1} - q_{7} q_{3} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\} \\ & - \left\{ {\frac{{\left( {q_{6} r_{1} - q_{4} q_{3} } \right)\left( {q_{1} r_{3} - q_{7} r_{1} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\} \\ & \left. { - \left\{ {\frac{{\left( {q_{6} q_{1} - q_{4} q_{3} } \right)\left( {q_{1} q_{8} - q_{7} q_{2} } \right)\left( {q_{1} r_{2} - q_{4} r_{1} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\}} \right] \\ \end{aligned} $$
$$ \begin{aligned} T_{2n} = & \frac{1}{{\left( {q_{5} q_{1} - q_{4} q_{2} } \right)}}\left[ {\left\{ {\frac{{\left( {q_{1} r_{2} - q_{4} r_{1} } \right)\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\}} \right. \\ & - \left\{ {\frac{{\left( {q_{1} r_{2} - q_{4} r_{1} } \right)\left( {q_{8} q_{1} - q_{7} q_{3} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\} \\ & - \left\{ {\frac{{\left( {q_{6} r_{1} - q_{4} q_{3} } \right)\left( {q_{1} r_{3} - q_{7} r_{1} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\} \\ & \left. { - \left\{ {\frac{{\left( {q_{6} q_{1} - q_{4} q_{3} } \right)\left( {q_{1} q_{8} - q_{7} q_{2} } \right)\left( {q_{1} r_{2} - q_{4} r_{1} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}}} \right\}} \right] \\ \end{aligned} $$
$$ T_{3n} = \frac{{\left( {q_{1} r_{3} - q_{7} r_{1} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{1} r_{2} - q_{4} r_{1} } \right)}}{{\left( {q_{9} q_{1} - q_{7} q_{3} } \right)\left( {q_{5} q_{1} - q_{4} q_{2} } \right) - \left( {q_{8} q_{1} - q_{7} q_{2} } \right)\left( {q_{6} q_{1} - q_{4} q_{3} } \right)}} $$

Here

$$ \begin{aligned} & q_{1} = - A_{2} \lambda_{n} + A_{3} \quad q_{2} = A_{4} \lambda_{n} \quad q_{3} = - A_{5} + A_{6} \lambda_{n}^{2} \quad q_{4} = A_{10} + A_{9} \lambda_{n}^{2} \quad q_{5} = - A_{12} - A_{11} \lambda_{n}^{2} \quad q_{6} = (A_{13} - A_{14} \lambda_{n}^{2} )\lambda_{n} \\ & q_{7} = - A_{12} + A_{11} \lambda_{n}^{2} \quad q_{8} = ( - A_{18} + A_{19} \lambda_{n}^{2} )\lambda_{n} \\ & r_{1} = - \left( {\lambda_{n}^{2} + A_{1} } \right)\quad r_{2} = \lambda_{n} A_{7} + A_{8} \quad r_{3} = A_{15} \lambda_{n} \\ \end{aligned} $$

Appendix E

$$\begin{aligned} & T_{4n} = i\alpha C_{11} - \lambda_{n} C_{13} T_{1n} + e_{31} \lambda_{n} T_{2n} - \beta_{1} \left( {1 + a^{*} \alpha^{2} - a^{*} \lambda_{n}^{2} } \right)T_{3n} \\ & T_{5n} = i\alpha C_{13} - \lambda_{n} C_{33} T_{1n} + e_{33} \lambda_{n} T_{2n} - \beta_{3} \left( {1 + a^{*} \alpha^{2} - a^{*} \lambda_{n}^{2} } \right)T_{3n} \\ & T_{6n} = C_{44} \left( {i\alpha T_{In} - \lambda_{n} } \right) - e_{15} i\alpha T_{2n} \\ & T_{7n} = e_{15} \left( {i\alpha T_{In} - \lambda_{n} } \right) - \alpha^{2} \\ & T_{8n} = i\alpha e_{31} - \lambda_{n} e_{33} T_{1n} + \lambda_{n}^{2} T_{2n} T_{1n} - P_{3} \left( {1 + a^{*} \alpha^{2} - a^{*} \lambda_{n}^{2} } \right)T_{3n} \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Singh, M. & Sharma, S. Gravitational Effect on Piezo-Thermoelasiticity in the Context of Three Phase Lag Model with Two Temperature. Int. J. Appl. Comput. Math 9, 139 (2023). https://doi.org/10.1007/s40819-023-01617-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01617-0

Keywords

Navigation