Log in

Construction of the Optical Soliton Solutions for Fokas–Lenells Equation by Unified Solver Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Nonlinear Schrödinger’s equation (NLSE) and its variant forms assume noteworthy applications in soliton theory. The Fokas–Lenells equation (FLE) is an integrable generalization of NLSE that describes the nonlinear pulse propagation in optical fiber. This paper aims to find optical soliton solutions for the FLE using a unified solver method in form of dark, periodic, singular and rational solutions. Additionally, the paper includes 3D and 2D graphs for selected solutions, which illustrate the specific dynamical and physical behavior of the solutions. This approach possesses the ability to uncover the entire wave configuration found in nonlinear partial differential equations within the realms of natural and physical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Biswas, A., Milovic, D., Edwards, M.: Mathematical theory of dispersion-managed optical solitons. Springer Science & Business Media (2010)

  2. Zayed, E., Shohib, R., Alngar, M., Biswas, A., Ekici, M., Khan, S., Alzahrani, A., Belic, M.: Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index. Ukr. J. Phys. Opt. 15(2747), 54 (2010)

    Google Scholar 

  3. Bayram, M.: Optical bullets with Biswas–Milovic equation having Kerr and parabolic laws of nonlinearity. Optik 270, 170046 (2022)

    Google Scholar 

  4. Arnous, A.H., Biswas, A., Yildirim, Y., Moraru, L., Aphane, M., Moshokoa, S., Alshehri, H.: Quiescent optical solitons with Kudryashov s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukr. J. Phys. Opt. 24(2), 105–13 (2023)

    Google Scholar 

  5. Yildrim, Y., Biswas, A., Dakova, A., Guggilla, P., Khan, S., Alshehri, HM., Belic, MR.: Cubic–quartic optical solitons having quadratic–cubic nonlinearity by sine-Gordon equation approach. Ukr. J. Phys. Opt. 22(4) (2021)

  6. Biswas, A.: (2022) Highly dispersive optical soliton perturbation with complex Ginzburg Landau model by semi inverse variation. In 10th (Online) international conference on applied analysis and mathematical modeling (ICAAMM22); 72

  7. Rehman, U.R., Awan, U.A., Abro, A.K., Tag El Din, E.M., Jafar, S.: A non-linear study of optical solitons for Kaup-Newell equation without four-wave mixing. J. King Saud Univ. Sci. 34(5), 102056 (2022)

    Google Scholar 

  8. Ullah, N., Asjad, M.I., Rehman, H.U., Akgul, A.: Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers. Nonlinear Eng. 11(1), 80–91 (2022)

    Google Scholar 

  9. Rehman, U.R., Seadawy, A.R., Younis, M., Althobaiti, A.: Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg-de-Vries-Zakharov-Kuznetsov equation in plasma physics. Results Phys. 33(1), 105069 (2021)

    Google Scholar 

  10. González-Gaxiola, O., Biswas, A., Yildirim, Y., Alshehri, H.M.: Highly dispersive optical solitons in birefringent fibres with non) local form of nonlinear refractive index: Laplace Adomian decomposition. Ukr. J. Phys. Opt.: 23(2). China Ocean Eng. 2019(33), 477–83 (2022)

  11. Yildrim, Y., Biswas, A., Dakova, A., Guggilla, P., Khan, S., Alshehri, HM., Belic, MR.: Cubic–quartic optical solitons having quadratic–cubic nonlinearity by sine–Gordon equation approach. Ukr. J. Phys. Opt. 22(4) (2021)

  12. Biswas, A., Milovic, D.: Bright and dark solitons of the generalized nonlinear Schrödinger s equation. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1473–84 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Ma, G., Zhao, J., Zhou, Q., Biswas, A., Liu, W.: Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrödinger equation. Nonlinear Dyn. 106, 2479–84 (2021)

    Google Scholar 

  14. Liu, W., Zhang, Y., Luan, Z., Zhou, Q., Mirzazadeh, M., Ekici, M., Biswas, A.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96, 729–36 (2019)

    MATH  Google Scholar 

  15. Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Bright soliton solutions of the (2+ 1-dimensional generalized coupled nonlinear Schrodinger equation with the four-wave mixing term. Nonlinear Dyn. 104, 2613–20 (2021)

    Google Scholar 

  16. Biswas, A.: Soliton solutions of the perturbed resonant nonlinear Schrodinger s equation with full nonlinearity by semi-inverse variational principle. Quant. Phys. Lett. 1(2), 79–89 (2012)

    Google Scholar 

  17. Malik, S., Kumar, S.: Pure-cubic optical soliton perturbation with full nonlinearity by a new generalized approach. Optik 258, 168865 (2022)

    Google Scholar 

  18. Malik, S., Kumar, S., Biswas, A., Yildirim, Y., Moraru, L., Moldovanu, S., Alotaibi, A.: Gap solitons in fiber bragg gratings having polynomial law of nonlinear refractive index and cubic quartic dispersive reflectivity by lie symmetry. Symmetry 15(5), 963 (2023)

    Google Scholar 

  19. Wazwaz, A.M.: Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity. Math. Comput. Model. 43(1–2), 178–184 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Zayed, E.M., Abdelaziz, M.A.M.: Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods. Appl. Math. Comput. 218(5), 2259–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 133(4), 142 (2018)

    Google Scholar 

  22. Zayed, E.M.E., Al-Nowehy, A.G.: Generalized kudryashov method and general exp a function method for solving a high order nonlinear Schrodinger equation. J. Space Explor. 6, 1–26 (2017)

    Google Scholar 

  23. Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.S.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electron. 55(1), 8 (2023)

    Google Scholar 

  24. Alipour, M.M., Domairry, G., Davodi, A.G.: An application of exp-function method to approximate general and explicit solutions for nonlinear Schrödinger equations. Numer. Methods Partial Differ. Equ. 27(5), 1016–1025 (2011)

    MATH  Google Scholar 

  25. Lenells, J., Fokas, A.S.: The unified method: II. NLS on the half-line with t-periodic boundary conditions. J. Phys. A Math. Theor. 45(19), 195202 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Y., Yang, J.W., Chow, K.W., Wu, C.F.: Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation. Nonlinear Anal. Real World Appl. 33, 237–252 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Fokas, A.S.: On a class of physically important integrable equations. Physica D 87(1–4), 145–150 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123(2), 215–232 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Hendi, A.A., Ouahid, L., Kumar, S., Owyed, S., Abdou, M.A.: Dynamical behaviors of various optical soliton solutions for the Fokas Lenells equation. Mod. Phys. Lett. B 35(34), 2150529 (2021)

    MathSciNet  Google Scholar 

  30. Arshad, M., Lu, D., Rehman, M.U., Ahmed, I., Sultan, A.M.: Optical solitary wave and elliptic function solutions of the Fokas Lenells equation in the presence of perturbation terms and its modulation instability. Phys. Scr. 94(10), 105202 (2019)

    Google Scholar 

  31. Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the Fokas Lenells equation. Waves Random Compl. Media 27(4), 587–593 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Krishnan, E.V., Biswas, A., Zhou, Q., Alfiras, M.: Optical soliton perturbation with Fokas Lenells equation by map** methods. Optik 178, 104–110 (2019)

    Google Scholar 

  33. Aljohani, A.F., El-Zahar, E.R., Ebaid, A., Ekici, M., Biswas, A.: Optical soliton perturbation with Fokas–Lenells model by Riccati equation approach. Optik 172, 741–745 (2018)

    Google Scholar 

  34. Cinar, M., Secer, A., Ozisik, M., Bayram, M.: Derivation of optical solitons of dimensionless Fokas–Lenells equation with perturbation term using Sardar sub-equation method. Opt. Quant. Electron. 54(7), 402 (2022)

    Google Scholar 

  35. Lenells, J.: Dressing for a novel integrable generalization of the nonlinear Schrödinger equation. J. Nonlinear Sci. 20, 709–722 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22(1), 11 (2008)

    MATH  Google Scholar 

  37. Matsuno, Y.: A direct method of solution for the Fokas Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions. J. Phys A Math. Theor. 45(47), 475202 (2012)

    MATH  Google Scholar 

  38. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123(2), 215–232 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Al-Ghafri, K.S., Krishnan, E.V., Biswas, A.: W-shaped and other solitons in optical nanofibers. Results Phys. 23, 103973 (2021)

    Google Scholar 

  40. Zhao, Y., Fan, E.: Inverse scattering transformation for the Fokas-Lenells equation with nonzero boundary conditions (2019). ar**v preprint ar**v:1912.12400

  41. Cinar, M., Secer, A., Ozisik, M., Bayram, M.: Derivation of optical solitons of dimensionless Fokas–Lenells equation with perturbation term using Sardar sub-equation method. Opt. Quant. Electron. 54(7), 402 (2022)

    Google Scholar 

  42. Tuluce Demiray, S., Bulut, H.: New exact solutions of the new Hamiltonian amplitude equation and Fokas–Lenells equation. Entropy 17(9), 6025–6043 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)

    Google Scholar 

  44. Hosseini, K., Mirzazadeh, M., Vahidi, J., Asghari, R.: Optical wave structures to the Fokas Lenells equation. Optik 207, 164450 (2020)

    Google Scholar 

  45. Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton solutions to Fokas–lenells equation using some different methods. Optik 173, 21–31 (2018)

    Google Scholar 

  46. Shehata, M.S., Rezazadeh, H., Zahran, E.H., Tala-Tebue, E., Bekir, A.: New optical soliton solutions of the perturbed Fokas–Lenells equation. Commun. Theor. Phys. 71(11), 1275 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Alkhidhr, H.A., Abdelrahman, M.A.: Wave structures to the three coupled nonlinear Maccari s systems in plasma physics. Results Phys. 1(33), 105092 (2022)

    Google Scholar 

  48. Abdelrahman, M.A., Alkhidhr, H.A.: A robust and accurate solver for some nonlinear partial differential equations and tow applications. Physica Scripta. 95(6), 065212 (2020)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamood Ur Rehman.

Ethics declarations

Conflict of interest

The authors affirm that they have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Rehman, H.U. Construction of the Optical Soliton Solutions for Fokas–Lenells Equation by Unified Solver Method. Int. J. Appl. Comput. Math 9, 94 (2023). https://doi.org/10.1007/s40819-023-01575-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01575-7

Keywords

Navigation