Log in

Dynamics of Melting Heat Transfer of a Micropolar Nanofluid over an Electromagnetic Actuator with Irregular Thickness and Non-uniform Heat Source

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the current investigation, the mechanism of melting heat propagation in the motion of micropolar fluid is considered over a stretchy electromagnetic actuator (Riga plate) with irregular sheet thickness. The fluid contains tiny nanoparticles in the presence of uneven heat source, radiation, thermo-migration and haphazard movement of the tiny particles coupled with variable heat conductivity. The developed transport equations are numerically tackled by means of Pseudo-spectral method after being simplified from partial to ordinary derivatives. The contributions of the different physical terms emanating from the main equations are communicated via graphs and tables to demonstrate their impact on the dimensionless quantities. Findings reveal that heat transfer at the solid–fluid interface upsurges with the enhancement of thermal radiation, surface thickness and heat source parameters but growth in the melting term prevents propagation of heat at the surface. In addition, the surface drag factor depreciates with higher material term, modified Hartmann number together with the surface thickness parameter whereas the power law exponent strengthens the friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Suganya, S., Muthtamilselvan, M., Abdalla, B.: Effects of radiation and chemical reaction on Cu-Al2O3/water hybrid flow past a melting surface in the existence of cross magnetic field. Ricerche Mat. 6, 155 (2021)

    Google Scholar 

  2. Fatunmbi, E.O., Salawu, S.O.: Thermodynamic second law analysis of magneto-micropolar fluid flow past nonlinear porous media with non-uniform heat source. Propuls. Power Res. 9(3), 281–288 (2020)

    Google Scholar 

  3. Reddy, G.V.R., Krishna, Y.H.: Soret and Dufour effects on MHD micropolar fluid flow over a linearly stretching sheet through a non-Darcy porous medium. Int. J. Appl. Mech. Eng. 23(2), 485–502 (2018)

    MathSciNet  Google Scholar 

  4. Sandeep, N., Babu, M.J., Gupta, R.: Effect of radiation and viscous dissipation on stagnation-point flow of a micropolar fluid over a nonlinear stretching surface with suction/injection. J. Basic Appl. Res. Int. 7, 73–82 (2015)

    Google Scholar 

  5. Waqas, M., Farooq, M., Khan, M.I., Alsaedi, A., Hayat, T., Yasmeen, T.: Magnetohydromagnetic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat Mass Trans. 102, 766–772 (2016)

    Google Scholar 

  6. Okoya, S.S., Hassan, A.R., Salawu, S.O.: On free convection flow of a moving vertical permeable plate with quadratic Boussinesq approximation and variable thermal conductivity. Heat Transf. Res. 52(7), 55–66 (2021)

    Google Scholar 

  7. Shamshuddin, M.D., Salawu, S.O., Ogunseye, H.A., Mabood, F.: Dissipative Power-law fluid flow using spectral quasi linearization method over an exponentially stretchable surface with Hall current and power-law slip velocity. Int. Commun. Heat Mass Trans. 119, 104933 (2020)

    Google Scholar 

  8. Salawu, S.O., Fatunmbi, E.O., Ayanshola, M.A.: On the reactive-diffusion of a fourth-grade hydromagnetic fluid flow and thermal criticality in a plane Couette device. Results Eng. 8, 100169 (2020)

    Google Scholar 

  9. Fatunmbi, E.O., Salawu, S.O.: Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips. Int. J. Modell. Simul. 21, 1–11 (2021)

    Google Scholar 

  10. Salawu, S.O., Fatunmbi, E.O., Okoya, S.S.: MHD heat and mass transport of Maxwell Arrhenius kinetic nanofluid flow over stretching surface with nonlinear variable properties. Results Chem. 3, 100125 (2021)

    Google Scholar 

  11. Upreti, H., Pandey, A.K., Uddin, Z., Kumar, M.: Thermophoresis and Brownian motion effects on 3D flow of Casson nanofluid consisting microorganisms over a Riga plate using PSO: A numerical study. Chin. J. Phy. 78, 234–270 (2022)

    MathSciNet  Google Scholar 

  12. Muthtamilselvan, M., Suganya, S., Al-Mdallal, Q.M.: Stagnation-point flow of the Williamson nanofluid containing gyrotactic micro-organisms. Proc. Natl. Acad. Sci. India Sect. A: Phy. Sci. 91, 633–648 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Xuan, Y., Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Google Scholar 

  14. Ferdows, M., Shamshuddin, M.D., Salawu, S.O., Zaimi, K.: Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation. SN Appl. Sci. 3, 264–275 (2021)

    Google Scholar 

  15. Makinde, O.D., Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Thermal Sci. 109, 159–171 (2016)

    Google Scholar 

  16. Haneef, M., Nawaz, M., Alharbi, S.O., Elmasry, Y.: Cattaneo–Christov heat flux theory and thermal enhancement in hybrid nano Oldroyd-B rheological fluid in the presence of mass transfer. Int. Commun. Heat Mass Trans. 126, 105344 (2021)

    Google Scholar 

  17. Alizadeh, M., Dogonchi, A.S., Ganji, D.D.: Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field. Case Study Therm. Eng. 12, 319–332 (2018)

    Google Scholar 

  18. Salawu, S.O., Okoya, S.S.: On criticality for a branched-chain thermal reactive-diffusion in a cylinder. Combust. Sci. Technol. 192, 1–16 (2020)

    Google Scholar 

  19. Salawu, S.O.: Two-step exothermic reaction-diffusion of hydromagnetic Prandtl-Eyring viscous heating fluid in a channel. Int. J. Thermofluids 17, 100300 (2023)

    Google Scholar 

  20. Iqbal, Z., Mehmood, Z., Ahmad, B.: Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy. Pramana-J. Phys. 90, 64–72 (2018)

    Google Scholar 

  21. Singh, K., Pandey, A.K., Kumar, M.: Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method. Propuls. Power Res. 10(2), 194–207 (2021)

    Google Scholar 

  22. Yusuf, T.A., Akaje, T.W., Salawu, S.O., Gbadeyan, J.A.: Arrhenius activation energy effect on a stagnation point slippery MHD Casson nanofluid flow with entropy generation and melting heat transfer, Defect and Diffusion. Forum 408, 1–18 (2021)

    Google Scholar 

  23. Rashid, M., Nadeem, S., Shahzadi, I.: Permeability impact on electromagnetohydrodynamic flow through corrugated walls of microchannel with variable viscosity. Adv. Mech. Engin. 12(7), 1–11 (2020)

    Google Scholar 

  24. Gailitis, A., Lielausis, O.: On a possibility to reduce the hydromagnetic resistance of a plate in an electrolyte. Appl. Magnetohdrodyn Rep. Phys. Inst. Riga 12, 143–149 (1961)

    Google Scholar 

  25. Ahmad, A., Asghar, S., Afzal, S.: Flow of nanofluid past a RIga plate. J. Magnet. Magnet. Mater. 402, 44–48 (2016)

    Google Scholar 

  26. Abbas, N., Malik, M.Y., Nadeem, S.: Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga surface surface. Comput. Methods Programs Biomed. 185(1), 105136 (2019)

    Google Scholar 

  27. Fatunmbi, E.O., Adeosun, A.T.: Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction. Int. Commun. Heat Mass Transf. 119, 104913 (2020)

    Google Scholar 

  28. Fatunmbi, E.O., Adeosun, A.T., Salawu, S.O.: Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties. Part. Differ. Equ. Appl. Math. 4, 100152 (2021)

    Google Scholar 

  29. Singh, K., Pandey, A.K., Kumar, M.: Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ion-slip currents: an analytic approach. Propuls. Power Res. 9(3), 289–303 (2020)

    Google Scholar 

  30. Hayat, T., Imtiaz, M., Alsaedi, A.: Melting heat transfer in the MHD flow of Cu-water nanofluid with viscous dissipation and joule heating. Adv. Powd. Technol. 27, 13018 (2016)

    Google Scholar 

  31. Salawu, S.O.: Evaluation of thermo-diffusion and diffusion-thermo phenomenon on the reactive micropolar fluid motion over an extending device. Int. J. Model. Simul. 21, 88514 (2023)

    Google Scholar 

  32. Devi, S.P.A., Prakash, M.: Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J. Nigerian Math. Soc. 34, 318–330 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Farooq, M., Anjum, A., Hayat, T., Alsaedi, A.: Melting heat transfer in the flow over a variable thicked Riga plate with homogeneous-heterogeneous reactions. J. Mol. Liquids 23, 10123 (2016)

    Google Scholar 

  34. Sharma, R.P., Acharya, N., Das, K.: On the impact of variable thickness and melting transfer of heat on magnetohydrodynamics nanofluid flow past a slendering stretching sheet. Indian J. Geo Mar. Sci. 49, 641–648 (2014)

    Google Scholar 

  35. Kumaran, G., Makinde, O.D., Sivaraj, R.: Unsteady magnetohydrodynamic flow past a slendering stretching surface with thermophoresis and brownian motion, Defect and Diffusion. Forum 387, 653–665 (2021)

    Google Scholar 

  36. Fatunmbi, E.O., Adeniyan, A.: Heat and mass transfer in MHD micropolar fluid flow over a stretching sheet with velocity and thermal slip conditions, Open J. of. Fluid Dyn. 8, 195–215 (2018)

    Google Scholar 

  37. Pandey, A.K.: Effect of natural convection on 3D MHD flow of MoS2-GO/H2O via porous surface due to multiple slip mechanisms. J. Taibah Uni. Sci. 16(1), 749–762 (2022)

    MathSciNet  Google Scholar 

  38. Fatunmbi, E.O., Ogunseye, H.A., Sibanda, P.: Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple slip conditions. Int. Commun. Heat Mass Transf. 115, 104577 (2020)

    Google Scholar 

  39. Jena, S.K., Mathur, M.N.N.: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal flat plate. Int. J. Eng. Sci. 19, 1431–1439 (1981)

    MATH  Google Scholar 

  40. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)

    MathSciNet  MATH  Google Scholar 

  41. Peddieson, J.: An application of the micropolar model to the calculation of a turbulent shear flow. Int. J. Eng. Sci. 10, 23–32 (1972)

    Google Scholar 

  42. Yucel, A.: Mixed convection in micropolar fluid flow over a horizontal plate with surface mass transfer. Int. J. Eng. Sci. 27, 1593–1602 (1989)

    MATH  Google Scholar 

  43. Ishak, A.: Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45, 367–373 (2010)

    MATH  Google Scholar 

  44. Sharma, R.P., Ibrahim, S.M., Mishra, S.R., Tinker, S.: Impact of dissipative heat and radiative heat on MHD viscous flow through a slandering stretching sheet with temperature?dependent variable viscosity. Heat Transf. 22, 1–20 (2021)

    Google Scholar 

  45. Hayat, T., Qayyum, S., Alsaedi, A., Ahmad, B.: Mechanisms of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity. Results Phys. 8, 819–828 (2018)

    Google Scholar 

  46. Khan, M., Malik, M.Y., Salahuddin, T.: Heat generation and solar radiation effects on Carreau nanofluid over a stretching sheet with variable thickness: Using coefficients improved by Cash and Carp. Results Phys. 7, 2512–2519 (2017)

    Google Scholar 

  47. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, 10 (2000)

  48. Motsa, S.S.: On the practical use of the spectral homotopy analysis method and local linearization method for unsteady boundary-layer flows caused by an impulsively stretching plate. Numer Algor. 66, 865–883 (2014)

    MATH  Google Scholar 

  49. Singh, K., Kumar, M.: Melting and heat absorption effects in boundary layer stagnation-point flow towards a stretching sheet in a micropolar fluid. Ain Shams Eng. J. 9, 861–868 (2018)

    Google Scholar 

  50. Bachok, N., Ishak, A., Pop, L.: Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Phys. Lett. A 374, 4075–4079 (2010)

    MATH  Google Scholar 

  51. Abbas, T., Ayub, M., Bhatti, M.M., Rashidi, M.M., Ali, M.E.: Entropy generation on nanofluid flow through a horizontal Riga plate. Entropy 18, 60223 (2016)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

E.O.F.: Conceived and designed the analysis A.T.A.: Analyzed and interpreted the data S.O.S.: Contributed analysis tools and wrote the paper.

Corresponding author

Correspondence to S. O. Salawu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatunmbi, E.O., Adeosun, A.T. & Salawu, S.O. Dynamics of Melting Heat Transfer of a Micropolar Nanofluid over an Electromagnetic Actuator with Irregular Thickness and Non-uniform Heat Source. Int. J. Appl. Comput. Math 9, 45 (2023). https://doi.org/10.1007/s40819-023-01526-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01526-2

Keywords

Navigation