Log in

On Lump, Periodic and Travelling Wave Structures to the Generalized Breaking Soliton Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, the generalized breaking soliton equation is considered which demonstrates the intersections of the surface wave dispersion curve and the complex-zone border in a weakly magnetic plasma. Firstly, the Hirota bilinear method is employed to determine the bilinear form of given model. Consequently, the lump wave solutions, collision of lump with periodic waves, collision of lump wave with single and double-kink soliton solutions, periodic wave structures with single and double-kink soliton solutions are developed. Additionally, we employ the polynomial-expansion method to construct a variety of exact travelling wave solutions. The 3D, contour and 2D graphs are visualized to understand the physical behaviour of the considered model. The considered strategies seem to be more fascinating approaches to develop some new travelling wave structures for various modern nonlinear models from the recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Seadawy, A.R., Cheemaa, N.: Applications of extended modified auxiliary equation map** method for high-order dispersive extended nonlinear schrödinger equation in nonlinear optics. Mod. Phys. Lett. B 33(18), 1950203 (2019)

    Article  Google Scholar 

  2. Kudryashov, N.A.: The painleve approach for finding solitary wave solutions of nonlinear nonintegrable differential equations. Optik 183, 642–649 (2019)

    Article  Google Scholar 

  3. Wazwaz, A.M.: The extended tanh method for new solitons solutions for many forms of the fifth-order kdv equations. Appl. Math. Comput. 184(2), 1002–1014 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Sun, Y.L., Ma, W.X., Yu, J.P.: N-soliton solutions and dynamic property analysis of a generalized three-component hirota-satsuma coupled kdv equation. Appl. Math. Lett. 120, 107224 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, L..x, Li, E..q, Wang, M..l: The (g’/g, 1/g)-expansion method and its application to travelling wave solutions of the zakharov equations. Appl. Math.-A J. Chin. Univ. 25(4), 454–462 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wazwaz, A.M.: Gaussian solitary waves for the logarithmic-kdv and the logarithmic-kp equations. Phys. Scr. 89(9), 095206 (2014)

    Article  Google Scholar 

  7. Bekir, A.: Application of the (g/ g)-expansion method for nonlinear evolution equations. Phys. Lett. A 372(19), 3400–3406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Osman, M.: Multi-soliton rational solutions for quantum zakharov kuznetsov equation in quantum magnetoplasmas. Waves in Random and Complex Media 26(4), 434–443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rezazadeh, H.: New solitons solutions of the complex ginzburg-landau equation with kerr law nonlinearity. Optik 167, 218–227 (2018)

    Article  Google Scholar 

  10. Ma, W.X., Osman, M., Arshed, S., Raza, N., Srivastava, H.: Practical analytical approaches for finding novel optical solitons in the single-mode fibers. Chin. J. Phys. 72, 475–486 (2021)

    Article  MathSciNet  Google Scholar 

  11. Younis, M., Ali, S., Rizvi, S.T.R., Tantawy, M., Tariq, K.U., Bekir, A.: Investigation of solitons and mixed lump wave solutions with (3+ 1)-dimensional potential-ytsf equation. Commun. Nonlinear Sci. Numer. Simul. 94, 105544 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seadawy, A.R., Ahmed, H.M., Rabie, W.B., Biswas, A.: Chirp-free optical solitons in fiber bragg gratings with dispersive reflectivity having polynomial law of nonlinearity. Optik 225, 165681 (2021)

    Article  Google Scholar 

  13. Gai, L., Ma, W.X., Sudao, B.: Abundant multilayer network model solutions and bright-dark solitons for a (3+ 1)-dimensional p-gblmp equation. Nonlinear Dyn. 106(1), 867–877 (2021)

    Article  Google Scholar 

  14. Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. SIAM, Thailand (1981)

    Book  MATH  Google Scholar 

  15. Ablowitz, M.J., Ablowitz, M., Clarkson, P., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering, p. 149. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  16. Hirota, R.: Direct methods in soliton theory, in: Solitons. Springer, 157-176 (1980)

  17. Satsuma, J.: Hirota bilinear method for nonlinear evolution equations, in: Direct and Inverse Methods in Nonlinear Evolution Equations. Springer, 171-222 (2003)

  18. Matveev, V.B., Matveev, V.: Darboux transformations and solitons

  19. Geng, X., He, G.: Some new integrable nonlinear evolution equations and darboux transformation. J. Math. Phys. 51(3), 033514 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Carillo, S., Lo Schiavo, M., Schiebold, C.: Bäcklund transformations and non-abelian nonlinear evolution equations: A novel bäcklund chart. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 12, 087 (2016)

  21. Hirota, R., Satsuma, J.: Nonlinear evolution equations generated from the bäcklund transformation for the boussinesq equation. Progress Theoret. Phys. 57(3), 797–807 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bluman, G.W., Kumei, S.: Symmetries and differential equations, p. 81. Springer Science and Business Media, Germany (2013)

    MATH  Google Scholar 

  23. Bira, B., Raja Sekhar, T., Zeidan, D.: Exact solutions for some time-fractional evolution equations using lie group theory. Math. Methods Appl. Sci. 41(16), 6717–6725 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Chen, Y.: Inverse scattering transformation for generalized nonlinear schrödinger equation. Appl. Math. Lett. 98, 306–313 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques. Phys. Scr. 94(11), 115212 (2019)

    Article  Google Scholar 

  26. Tariq, K.U., Tala-Tebue, E., Rezazadeh, H., Younis, M., Bekir, A., Chu, Y.M.: Construction of new exact solutions of the resonant fractional nls equation with the extended fan sub-equation method. J. King Saud Univ.-Sci. 33(8), 101643 (2021)

    Article  Google Scholar 

  27. Osman, M., Tariq, K., Bekir, A., Elmoasry, A., Elazab, N.S., Younis, M., Abdel-Aty, M.: Investigation of soliton solutions with different wave structures to the (2+1)-dimensional heisenberg ferromagnetic spin chain equation. Commun. Theor. Phys. 72(3), 035002 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Biswas, A., Zhou, Q., Ullah, M.Z., Triki, H., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. Optik 143, 131–134 (2017)

    Article  Google Scholar 

  29. Lou, S..y, Chen, L..L.: Formal variable separation approach for nonintegrable models. J. Math. Phys. 40(12), 6491–6500 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dai, C.Q., Wang, Y.Y.: Notes on the equivalence of different variable separation approaches for nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 19–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Osman, M.: One-soliton sha** and inelastic collision between double solitons in the fifth-order variable-coefficient sawada-kotera equation. Nonlinear Dyn. 96(2), 1491–1496 (2019)

    Article  MATH  Google Scholar 

  32. Rezazadeh, H., Osman, M.S., Eslami, M., Ekici, M., Sonmezoglu, A., Asma, M., Othman, W.A.M., Wong, B., Mirzazadeh, M., Zhou, Q.: Mitigating internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164, 84–92 (2018)

    Article  Google Scholar 

  33. Osman, M., Ghanbari, B.: New optical solitary wave solutions of fokas-lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)

    Article  Google Scholar 

  34. Tarla, S., Ali, K.K., Yilmazer, R., Osman, M.: On dynamical behavior for optical solitons sustained by the perturbed chen-lee-liu model. Commun. Theor. Phys. 74(7), 075005 (2022)

    Article  MathSciNet  Google Scholar 

  35. Osman, M., Machado, J.: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional bogoyavlensky-konopelchenko equation with variable coefficients. J. Electromagn. Waves Appl. 32(11), 1457–1464 (2018)

    Article  Google Scholar 

  36. Adel, M., Baleanu, D., Sadiya, U., Arefin, M.A., Uddin, M.H., Elamin, M.A., Osman, M.: Inelastic soliton wave solutions with different geometrical structures to fractional order nonlinear evolution equations. Results in Physics, 105661 (2022)

  37. Hong-Hai, H., Da-Jun, Z., Jian-Bing, Z., Yu-Qin, Y.: Rational and periodic solutions for a (2+ 1)-dimensional breaking soliton equation associated with zs-akns hierarchy. Commun. Theor. Phys. 53(3), 430 (2010)

    Article  MATH  Google Scholar 

  38. Bo, Q., Bo, T., Li-Cai, L., **ang-Hua, M., Wen-Jun, L.: Bäcklund transformation and multisoliton solutions in terms of wronskian determinant for (2+1)-dimensional breaking soliton equations with symbolic computation. Commun. Theor. Phys. 54(6), 1059 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, H., Wan, X., Fu, Z., Liu, S.: New special structures to the (2+ 1)-dimensional breaking soliton equations. Phys. Scr. 84(3), 035005 (2011)

    Article  MATH  Google Scholar 

  40. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hosseini, K., Seadawy, A.R., Mirzazadeh, Eslami, M.M., Radmehr, S., Baleanu, D.: Multiwave, multicomplexiton, and positive multicomplexiton solutions to a (3+ 1)-dimensional generalized breaking soliton equation. Alexandria Eng. J. 59(5), 3473–3479 (2020)

  42. Zhao, Z., He, L.: Bäcklund transformations and riemann-bäcklund method to a (3+ 1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 135(8), 1–21 (2020)

    Article  Google Scholar 

  43. Wazwaz, A.M.: A new integrable (2+ 1)-dimensional generalized breaking soliton equation: N-soliton solutions and traveling wave solutions. Commun. Theor. Phys. 66(4), 385 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+ 1)-dimensional breaking soliton equation. Phys. Lett. A 382(19), 1268–1274 (2018)

    Article  MathSciNet  Google Scholar 

  45. Gai, L., Ma, W.X., Li, M.: Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+ 1)-dimensional generalized breaking soliton equation. Phys. Lett. A 384(8), 126178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kaplan, M., Bekir, A., Akbulut, A.: A generalized kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 85(4), 2843–2850 (2016)

    Article  MathSciNet  Google Scholar 

  47. Gepreel, K.A.: Analytical methods for nonlinear evolution equations in mathematical physics. Mathematics 8(12), 2211 (2020)

    Article  Google Scholar 

  48. Arbabi, S., Najafi, M.: Soliton solutions of nonlinear evolution equations in mathematical physics. Optik 127(10), 4270–4274 (2016)

    Article  Google Scholar 

  49. Zayed, E.: The (\(G^{\prime }/G\))-expansion method and its applications to some non-linear evolution equations in the mathematical physics. J. Appl. Math. Comput. 30(1), 89–103 (2009)

    Article  MathSciNet  Google Scholar 

  50. Kumar, S., Almusawa, H., Hamid, I., Abdou, M.: Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized non-linear evolution equation in plasma physics. Results Phys. 26, 104453 (2021)

    Article  Google Scholar 

  51. Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the sawada-kotera, lax, and caudrey-dodd-gibbon equations in plasma physics: Painleve analysis and multi-soliton solutions. Phys. Scr. 97(3), 035201 (2022)

    Article  Google Scholar 

  52. Liu, M., Zheng, Y.: New solutions for an elliptic equation method and its applications in nonlinear evolution equations. J. Appl. Math. Phys. 10(8), 2415–2431 (2022)

    Article  Google Scholar 

  53. Zhang, L.L., Yu, J.P., Ma, W.X., Khalique, C.M., Sun, Y.L.: Kink solutions of two generalized fifth-order nonlinear evolution equations. Mod. Phys. Lett. B 36(03), 2150555 (2022)

    Article  MathSciNet  Google Scholar 

  54. Hirota, R.: The direct method in soliton theory, p. 155. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the honorable reviewers for their remarkable suggestions and recommendations to improve our manuscript in the best way.

Author information

Authors and Affiliations

Authors

Contributions

1. K.U.T.: Project administration, Validation, Review and editing. 2. A.M.W.: Conceptualization, Supervision. 2. R.N.T.: Formal analysis, Visualization, Writing original draft.

Corresponding author

Correspondence to Kalim U. Tariq.

Ethics declarations

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Financial disclosure

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, K.U., Wazwaz, A.M. & Tufail, R.N. On Lump, Periodic and Travelling Wave Structures to the Generalized Breaking Soliton Model. Int. J. Appl. Comput. Math 8, 271 (2022). https://doi.org/10.1007/s40819-022-01470-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01470-7

Keywords

Navigation