Log in

Investigation of a Drug Release Moving Boundary Problem in a Swelling Polymeric Device

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper considers a drug delivery polymeric device in contact with a solvent as a nonlinear moving boundary problem. In this problem, the drug concentration and unknown moving boundary must be determined. First, the positivity and uniqueness of the solution are proved. Then, the main problem is considered iterative, and a backward stable finite difference technique is used to treat the problem numerically. Eventually, some numerical simulations are involved in exhibiting the ability of the method and the soundness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Kaoui, B., Lauricella, M., Pontrelli, G.: Mathematical modelling of drug release from multi-layer capsules. ar**v:1708.01205 (2017)

  2. Ulbrich, K., Hola, K., Subr, V., Bakandritsos, A., Tucek, J., Zboril, R.: Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338 (2016)

    Article  Google Scholar 

  3. Li, J., Mooney, D.J.: Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1(12), 1 (2016)

    Article  Google Scholar 

  4. Pareek, A., Maheshwari, S., Cherlo, S., Thavva, R.S.R., Runkana, V.: Modeling drug release through stimuli responsive polymer hydrogels. Int. J. Pharm. 532(1), 502 (2017)

    Article  Google Scholar 

  5. Tibbitt, M.W., Dahlman, J.E., Langer, R.: Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138(3), 704 (2016)

    Article  Google Scholar 

  6. Setapa, A., Ahmad, N., Mohd Mahali, S., Mohd Amin, M.C.I.: Mathematical model for estimating parameters of swelling drug delivery devices in a two-phase release. Polymers 12(12), 2921 (2020)

    Article  Google Scholar 

  7. Goddard, W.A., Cagin, T., III., Blanco, M., Vaidehi, N., Dasgupta, S., Floriano, W., Belmares, M., Kua, J., Zamanakos, G., Kashihara, S., et al.: Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers. Comput. Theor. Polym. Sci. 11(5), 329 (2001)

    Article  Google Scholar 

  8. Weinan, E., Engquist, B.: Multiscale modeling and computation. Not. Am. Math. Soc. 50(9), 1062 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Deen, N.G., van Sint Annaland, M., Kuipers, J.: Multi-scale modeling of dispersed gas–liquid two-phase flow. Chem. Eng. Sci. 59(8–9), 1853 (2004)

    Article  Google Scholar 

  10. Moroney, K.M., Kotamarthy, L., Muthancheri, I., Ramachandran, R., Vynnycky, M.: A moving-boundary model of dissolution from binary drug-excipient granules incorporating microstructure. Int. J. Pharm. 599, 120219 (2021)

    Article  Google Scholar 

  11. Moroney, K.M., Vynnycky, M.: Mathematical modelling of drug release from a porous granule. Appl. Math. Model. 100, 432 (2021)

    Article  MathSciNet  Google Scholar 

  12. Bagherpoorfard, M., Soheili, A.R.: A numerical method based on the moving mesh for the solving of a mathematical model of the avascular tumor growth. Comput. Methods Differ. Equ. 9(2), 327 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Garshasbi, M., Sanaei, F.: A variable time-step method for a space fractional diffusion moving boundary problem: an application to planar drug release devices. Int. J. Numer. Model. Electron. Netw. Devices Fields 34(3), e2852 (2021)

    Article  Google Scholar 

  14. Garshasbi, M., Malek Bagomghaleh, S.: An iterative approach to solve a nonlinear moving boundary problem describing the solvent diffusion within glassy polymers. Math. Methods Appl. Sci. 43(6), 3754 (2020)

    Article  MathSciNet  Google Scholar 

  15. Garshasbi, M., Nikazad, T., Sanaei, F.: Development of a computational approach for a space-time fractional moving boundary problem arising from drug release systems. Comput. Appl. Math. 40(3), 1 (2021)

    Article  MathSciNet  Google Scholar 

  16. Rachid, A., Bahaj, M., Fakhar, R.: Finite volume element approximation for time-dependent convection–diffusion–reaction equations with memory. Comput. Methods Differ. Equ. 9(4), 977 (2021)

    MathSciNet  Google Scholar 

  17. Marin, M.: A temporally evolutionary equation in elasticity of micropolar bodies with voids. Bull. Ser. Appl. Math. Phys. 60, 3 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Marin, M.: On the domain of influence in thermoelasticity of bodies with voids. Arch. Math. 33(3), 301 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Peppas, N.A., Narasimhan, B.: Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J. Control. Release. 190, 75 (2014)

    Article  Google Scholar 

  20. Bruschi, M.L.: Strategies to Modify the Drug Release from Pharmaceutical Systems. Woodhead Publishing, Sawston (2015)

    Google Scholar 

  21. Fu, G., Soboyejo, W.: Investigation of swellable poly (n-isopropylacrylamide) based hydrogels for drug delivery. Mater. Sci. Eng. C. 31(5), 1084 (2011)

    Article  Google Scholar 

  22. Siepmann, J., Peppas, N.A.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (hpmc). Adv. Drug Deliv. 64, 163 (2012)

    Article  Google Scholar 

  23. Siepmann, J., Goepferich, A.: Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. 48(2–3), 229 (2001)

    Article  Google Scholar 

  24. Lin, C.C., Metters, A.T.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. 58(12–13), 1379 (2006)

    Article  Google Scholar 

  25. Bierbrauer, F.: Hydrogel drug delivery: diffusion models. University of Wollongong, Australia (2005)

    Google Scholar 

  26. Saudi, M.H., Mahali, S.M., Harun, F.N.: The analytical solution for drug delivery system with nonhomogeneous moving boundary condition. AIP Conf. Proc. 1870(1), 040069 (2017)

    Article  Google Scholar 

  27. Brazel, C.S., Peppas, N.A.: Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm. 49(1), 47 (2000)

    Article  Google Scholar 

  28. Siegel, R.A., Rathbone, M.J.: Fundamentals and applications of controlled release drug delivery. Springer, Boston, MA (2012)

    Google Scholar 

  29. Dilip Kumar, J., Atul, K., Raja Ram, Y.: Analytical solution to the one-dimensional advection-diffusion equation with temporally dependent coefficients. Water Resour. Prot. 3(1), 76 (2011)

    Article  Google Scholar 

  30. Kanjickal, D.G., Lopina, S.T.: Modeling of drug release from polymeric delivery systems-a review. Crit. Rev. Ther. Drug Carrier Syst. 21(5), 345 (2004)

    Article  Google Scholar 

  31. Engineer, C., Parikh, J., Raval, A.: Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater. Artif. Organs. 25(2), 79 (2011)

    Google Scholar 

  32. Grassi, M., Grassi, G.: Mathematical modelling and controlled drug delivery: matrix systems. Curr. Drug Deliv. 2(1), 97 (2005)

    Article  Google Scholar 

  33. Vuik, C.: Some historical notes about the Stefan problem. Delft University of Technology, The Netherlands (1993)

    MATH  Google Scholar 

  34. Morrow, L.C., King, J.R., Moroney, T.J., McCue, S.W.: Moving boundary problems for quasi-steady conduction limited melting. SIAM J. Math. Anal. 79(5), 2107 (2019)

    Article  MathSciNet  Google Scholar 

  35. Gupta, S.C.: The Classical Stefan Problem: Basic Concepts, Modelling and Analysis with Quasi-analytical Solutions and Methods, vol. 45. Elsevier, Amsterdam (2017)

    Google Scholar 

  36. Crank, J.: Free and Moving Boundary Problems. Oxford University Press, New York (1984)

    MATH  Google Scholar 

  37. Hill, J.M.: One-Dimensional Stefan Problems: An Introduction, vol. 31. Longman Sc & Tech, New York (1987)

    MATH  Google Scholar 

  38. Lee, P.I.: Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. Int. J. Pharm. 418(1), 18 (2011)

    Article  Google Scholar 

  39. Cannon, J.R.: The One-Dimensional Heat Equation, vol. 23. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

Download references

Acknowledgements

The author is grateful to anonymous referees and the handling editor for their helpful comments, which directly contribute to the readability and reliability of the current paper.

Funding

No funding source currently available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Garshasbi.

Ethics declarations

Conflict of interest

There is no conflicting of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garshasbi, M., Bagomghaleh, S.M. Investigation of a Drug Release Moving Boundary Problem in a Swelling Polymeric Device. Int. J. Appl. Comput. Math 8, 73 (2022). https://doi.org/10.1007/s40819-022-01281-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01281-w

Keywords

Navigation