Log in

Simulation by Heat and Mass Lines Technique of Double-Diffusive Convection Under Magnetic Field of Exponentially Heated and Soluted Enclosure

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present numerical study explores an unsteady double-diffusive convection phenomenon for different fluids (air at \(17^\circ \text {C}\), water at \(17^ \circ \text {C}\), and ethylene glycol \(50\%\) at \(44^ \circ \text {C}\) ) under the influence of uniform magnetic field induced along the horizontal direction. Temperature and solute vary exponentially at left solid wall, whereas right-solid wall maintains lower temperature and solute. Furthermore, horizontal walls are insulated and impermeable. After transferring flow equations into stream function vorticity form, an iterative second-order finite difference based method along with successive over-relaxation (SOR) technique has been utilized to solve them. New types of visualization techniques are used to explore the heat and mass flows, known as heat and mass lines visualization techniques. In-house CFD (computational fluid dynamics) code was developed to solve the flow governing equation used after validation with experimental and numerical benchmarks results available in the literature. The influence of various forces (viscous, buoyancy, and electromagnetic) and different type of diffusivity (momentum, thermal, and mass) on flow structure, heat, and mass flows inside the enclosure in addition to local and overall heat and mass transfers have been discussed. Results showed that solute mixing could be minimized by raising the Lewis number and thus direct mass transfer maximize. When Rayleigh number increases from \(10^3\) to \(10^4\) and \(10^4\) to \(10^5\) enhancement in overall heat transfer are about \(112\%\) and \(117\%\), respectively, whereas overall mass transfer has been enhanced by \(116\%\) and \(94\%\). As Hartmann number increases from \({\text {Ha}}=0\) to \({\text {Ha}}=20\), there is a significant fall in the overall heat and mass transfers by \(29\%\) and \(15\%\), respectively. It can be concluded that direct heat and mass transfer can be optimized by imposing a magnetic field of suitable strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\left( u',v'\right) \) :

Dimensional velocity components \(\left( \mathrm {ms}^{-1}\right) \)

\(\left( U,V\right) \) :

Dimensionless velocity components

\(\left( x',y'\right) \) :

Dimensional coordinates \(\left( \text {m}\right) \)

\(\left( X,Y\right) \) :

Dimensionless coordinates

\(\textit{g}\) :

Gravitational acceleration \(\left( \mathrm {ms}^{-2}\right) \)

\(\text {C}\) :

Celsius

D :

Mass diffusivity \(\left( \mathrm {m}^{2}\mathrm {s}^{-1}\right) \)

H :

Enclosure side

N :

Buoyancy ratio

P :

Dimensionless pressure

p :

Dimesional pressure \(\left( \mathrm {N}\mathrm {m}^{-2}\right) \)

S :

Dimensionless solute

\(S'\) :

Dimensional solute \(\left( \mathrm {kgm}^{-3}\right) \)

T :

Dimensionless temperature

t :

Dimensionless time

\(T'\) :

Dimensional temperature \(\left( \mathrm {K}\right) \)

\(t'\) :

Dimensional time \(\left( \mathrm {s}\right) \)

CFD:

Computational Fluid Dynamics

\(\alpha \) :

Thermal diffusivity \(\left( \mathrm {m}^{2}\mathrm {s}^{-1}\right) \)

\(\mu \) :

Dynamic viscosity \(\left( \mathrm {Kg}\mathrm {m}^{-1}\mathrm {s}^{-1}\right) \)

\(\nu \) :

Kinematic viscosity \(\left( \mathrm {m}^{2}\mathrm {s}^{-1}\right) \)

\(\Omega \) :

Dimensionless vorticity

\(\omega \) :

Dimensional vorticity

\(\rho \) :

Fluid density \(\left( \mathrm {Kg}\mathrm {m}^{-3}\right) \)

\(\sigma \) :

Electrical conductivity \(\left( \mathrm {W}\mathrm {m}^{-1}\mathrm {K}^{-1}\right) \)

k :

Thermal conductivity \(\left( \mathrm {W}\mathrm {m}^{-1}\mathrm {K}^{-1}\right) \)

\(\text {max}\) :

Maximum

\(\text {min}\) :

Minimum

h :

Higher

l :

Lower

\('\) :

Dimensional variables

\(^\circ \) :

Degree

References

  1. Abu-Hamdeh, N.H., Almitani, K.H., Gari, A.A., Alimoradi, A., Ahmadian, A., Baleanu, D.: Hydrodynamic analysis of a heat exchanger with crosscut twisted tapes and filled with thermal oil-based swcnt nanofluid: applying ann for prediction of objective parameters. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-020-10521-4

    Article  Google Scholar 

  2. Kilicman, A., Khan, Y., Ali, A., Faraz, N., Akgul, E.K., Inc, M.: Analytic approximate solutions for fluid flow in the presence of heat and mass transfer. Therm. Sci. 22, 259–264 (2018)

    Article  Google Scholar 

  3. Akgül, A., Siddique, I.: Analysis of mhd couette flow by fractal-fractional differential operators. Chaos, Solitons Fractals 146, 110893 (2021)

    Article  MathSciNet  Google Scholar 

  4. Alavyoon, F., Eklund, A., Bark, F.H., Karlsson, R.I., Simonsson, D.: Theoretical and experimental studies of free convection and stratification of electrolyte in a lead-acid cell during recharge. Electrochimica Acta 36(14), 2153–2164 (1991). https://doi.org/10.1016/0013-4686(91)85224-U

    Article  Google Scholar 

  5. Ali, R., Asjad, M.I., Akgül, A.: An analysis of a mathematical fractional model of hybrid viscous nanofluids and its application in heat and mass transfer. J. Comput. Appl. Math. 383, 113096 (2021). https://doi.org/10.1016/j.cam.2020.113096

    Article  MathSciNet  MATH  Google Scholar 

  6. Ali Lund, L., Ching, D.L.C., Omar, Z., Khan, I., Nisar, K.S.: Triple local similarity solutions of darcy-forchheimer magnetohydrodynamic (mhd) flow of micropolar nanofluid over an exponential shrinking surface: Stability analysis. Coatings (2019). https://doi.org/10.3390/coatings9080527

    Article  Google Scholar 

  7. Alsabery, A.I., Chamkha, A.J., Saleh, H., Hashim, I.: Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int. J. Heat Mass Transf. 100, 835–850 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.031

    Article  Google Scholar 

  8. Bagherzadeh, S.A., Jalali, E., Sarafraz, M.M., Akbari, O.A., Karimipour, A., Goodarzi, M., Bach, Q.V.: Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int. J. Numer. Methods Heat Fluid Flow 30(5), 2683–2704 (2019). https://doi.org/10.1108/HFF-02-2019-0150

    Article  Google Scholar 

  9. Basir, M.F.M., Naganthran, K., Azhar, E., Mehmood, Z., Mukhopadhyay, S., Nazar, R., Jamaludin, A., Baleanu, D., Nisar, K.S., Khan, I.: Unsteady nano-bioconvective channel flow with effect of nth order chemical reaction. Open Phys. 18(1), 1011–1024 (2020). https://doi.org/10.1515/phys-2020-0156

    Article  Google Scholar 

  10. Bhargava, R., Sharma, S., Bhargava, P., Bég, O.A., Kadir, A.: Finite element simulation of nonlinear convective heat and mass transfer in a micropolar fluid-filled enclosure with rayleigh number effects. Int. J. Appl. Comput. Math. 3(2), 1347–1379 (2017). https://doi.org/10.1007/s40819-016-0180-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Bose, Sayan, Banerjee, M.: Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling. J. Magnet. Magnet. Mater. 385, 32–46 (2015). https://doi.org/10.1016/j.jmmm.2015.02.060

    Article  Google Scholar 

  12. Chen, S., Tölke, J., Krafczyk, M.: Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients. Int. J. Heat Fluid Flow 31(2), 217–226 (2010). https://doi.org/10.1016/j.ijheatfluidflow.2009.12.013

    Article  Google Scholar 

  13. Corcione, M., Grignaffini, S., Quintino, A.: Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients. Int. J. Heat Mass Transf. 81, 811–819 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.013

    Article  Google Scholar 

  14. Costa, V.A.F.: Double diffusive natural convection in a square enclosure with heat and mass diffusive walls. Int J Heat Mass Transf 40(17), 4061–4071 (1997). https://doi.org/10.1016/S0017-9310(97)00061-6

    Article  MATH  Google Scholar 

  15. Deng, Q.H., Tang, G.F.: Numerical visualization of mass and heat transport for mixed convective heat transfer by streamline and heatline. Int. J. Heat Mass Transf. 45(11), 2387–2396 (2002). https://doi.org/10.1016/S0017-9310(01)00317-9

    Article  MATH  Google Scholar 

  16. Deshikachar, K.S., Rao, A.R.: Effect of a magnetic field on the flow and blood oxygenation in channels of variable cross-section. Int. J. Eng. Sci. 23(10), 1121–1133 (1985). https://doi.org/10.1016/0020-7225(85)90034-5

    Article  MATH  Google Scholar 

  17. Ellahi, R., Rahman, S.U., Nadeem, S., Vafai, K.: The blood flow of Prandtl fluid through a tapered stenosed arteries in permeable walls with magnetic field. Commun. Theor. Phys. 63(3), 353–358 (2015). https://doi.org/10.1088/0253-6102/63/3/353

    Article  MathSciNet  MATH  Google Scholar 

  18. Farid, S.K., Billah, M.M., Rahman, M.M., Uddin, M.S.: Numerical study of fluid flow on magneto-hydrodynamic mixed convection in a lid driven cavity having a heated circular hollow cylinder. Procedia Eng. 56, 474–479 (2013). https://doi.org/10.1016/j.proeng.2013.03.149

    Article  Google Scholar 

  19. Gebhart, B., Pera, L.: The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion. Int. J. Heat Mass Transf. 14(12), 2025–2050 (1971). https://doi.org/10.1016/0017-9310(71)90026-3

    Article  MATH  Google Scholar 

  20. Ghaffari, S., Alizadeh, S., Karimi, M.S.: Effect of magnetic field on temperature distribution of atherosclerotic plaques in coronary artery under pulsatile blood flow condition. Int. J. Therm. Sci. 64, 40–52 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.09.001

    Article  Google Scholar 

  21. Ghalib, M.M., Zafar, A.A., Farman, M., Akgül, A., Ahmad, M.O., Ahmad, A.: Unsteady mhd flow of maxwell fluid with caputo-fabrizio non-integer derivative model having slip/non-slip fluid flow and newtonian heating at the boundary. Indian J. Phys. (2021). https://doi.org/10.1007/s12648-020-01937-7

    Article  Google Scholar 

  22. Ying, G., **gang, Y., Aiwu, Z., Guocong, Y.: Measurement of liquid concentration fields near interface with cocurrent gas-liquid flow absorption using holographic interferometry1 1supported by the national natural science foundation of China (no.20476072). Chin. J. Chem. Eng. 14(6), 747–753 (2006). https://doi.org/10.1016/S1004-9541(07)60006-8

    Article  Google Scholar 

  23. Harzallah, H.S., Jbara, A., Slimi, K.: Double-diffusive natural convection in anisotropic porous medium bounded by finite thickness walls: validity of local thermal equilibrium assumption. Transp. Porous Media 103(2), 207–231 (2014). https://doi.org/10.1007/s11242-014-0298-3

    Article  MathSciNet  Google Scholar 

  24. Hazarika, S.A., Deshamukhya, T., Bhanja, D., Nath, S.: Thermal analysis of a constructal t-shaped porous fin with simultaneous heat and mass transfer. Chin. J. Chem. Eng. 25(9), 1121–1136 (2017). https://doi.org/10.1016/j.cjche.2017.03.034

    Article  Google Scholar 

  25. Hossain, M.S., Alim, M.A., Andallah, L.S.: Numerical simulation of mhd natural convection flow within porous trapezoidal cavity with heated triangular obstacle. Int. J. Appl. Comput. Math. 6(6), 166 (2020). https://doi.org/10.1007/s40819-020-00921-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, J.T., Ren, X.H., Liu, D., Zhao, F.Y., Wang, H.Q.: Natural convective heat and moisture transfer in an inclined building enclosure with one slender wall of finite thickness: analytical investigation and non-unique steady flow solutions. Int. J. Heat Mass Transf. 104, 1160–1176 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.033

    Article  Google Scholar 

  27. Hussain, S.H., Salam Hadi Hussain: Analysis of heatlines and entropy generation during double-diffusive MHD natural convection within a tilted sinusoidal corrugated porous enclosure. Eng. Sci. Technol. Int. J. 19, 926–945 (2016). https://doi.org/10.1016/j.jestch.2015.12.001

    Article  Google Scholar 

  28. Ikram, M.D., Asjad, M.I., Akgül, A., Baleanu, D.: Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. Alexandria Eng. J. 60(4), 3593–3604 (2021). https://doi.org/10.1016/j.aej.2021.01.054

    Article  Google Scholar 

  29. Jena, Sofen K., Malla, Laxman K., Mahapatra, Swarup K., Chamkha, Ali J.: Transient buoyancy-opposed double diffusive convection of micropolar fluids in a square enclosure. Int. J. Heat Mass Transf. 81, 681–694 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.030

    Article  Google Scholar 

  30. Kefayati, G.R., Gorji, M., Sajjadi, H., Ganji, D.D.: Investigation of Prandtl number effect on natural convection MHD in an open cavity by lattice Boltzmann method. Eng. Comput. 30(1), 97–116 (2012). https://doi.org/10.1108/02644401311286035

    Article  Google Scholar 

  31. Kimura, S., Bejan, A.: The heatline visualization of convective heat transfer. J. Heat Transf. 105, 916–919 (1983)

    Article  Google Scholar 

  32. Kushawaha, D., Yadav, S., Singh, D.K.: Thermo-solute natural convection with heat and mass lines in a uniformly heated and soluted rectangular enclosure for low prandtl number fluids. Int. J. Therm. Sci. 148, 106060 (2020). https://doi.org/10.1016/j.ijthermalsci.2019.106160

    Article  Google Scholar 

  33. Kushawaha, D., Yadav, S., Singh, D.K.: Magnetic field effect on double-diffusion with magnetic and non-magnetic nanofluids. Int. J. Mech. Sci. 191, 106085 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106085

    Article  Google Scholar 

  34. Kushawaha, D., Yadav, S., Singh, D.K.: Effect of non-uniform diameter and fractal dimension of al2o3 nanoparticle on double-diffusion in tilted enclosure. Chaos, Solitons Fractals 143, 110607 (2021). https://doi.org/10.1016/j.chaos.2020.110607

    Article  Google Scholar 

  35. Lund, L.A., Omar, Z., Khan, I., Kadry, S., Rho, S., Mari, I.A., Nisar, K.S.: Effect of viscous dissipation in heat transfer of mhd flow of micropolar fluid partial slip conditions: dual solutions and stability analysis. Energies (2019). https://doi.org/10.3390/en12244617

    Article  Google Scholar 

  36. Lund, L.A., Omar, Z., Khan, I., Baleanu, D., Nisar, K.S.: Dual similarity solutions of mhd stagnation point flow of casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. Sci. Rep. 10(1), 15405 (2020). https://doi.org/10.1038/s41598-020-72266-2

    Article  Google Scholar 

  37. Ma, Changfeng: Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal. Real World Appl. 10(5), 2666–2678 (2009). https://doi.org/10.1016/j.nonrwa.2008.07.006

    Article  MathSciNet  MATH  Google Scholar 

  38. Mahapatra, T.R., Mondal, P.: Heatline and massline analysis due to magnetohydrodynamic double diffusive natural convection in a trapezoidal enclosure with various aspect ratios. Int. J. Appl. Comput. Math. 5(3), 82 (2019). https://doi.org/10.1007/s40819-019-0657-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Mahapatra, T.R., Pal, D., Mondal, S.: Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity. Int. J. Heat Mass Transf. 57(2), 771–785 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.028

    Article  Google Scholar 

  40. Malvandi, A., Safaei, M.R., Kaffash, M.H., Ganji, D.D.: Mhd mixed convection in a vertical annulus filled with al2o3-water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 382, 296–306 (2015). https://doi.org/10.1016/j.jmmm.2015.01.060

    Article  Google Scholar 

  41. Mebarek-oudina, F., Rachid, B.: Numerical modeling of mhd stability in a cylindrical configuration. J. Franklin Inst. 351(2), 667–681 (2014). https://doi.org/10.1016/j.jfranklin.2012.11.004

    Article  MathSciNet  MATH  Google Scholar 

  42. Mebarek-Oudina, F., Bessaïh, R.: Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders. J. Appl. Fluid Mech. 9(2), 1655–1665 (2016). https://doi.org/10.18869/acadpub.jafm.68.235.24813

    Article  Google Scholar 

  43. Mishra, D., Muralidhar, K., Munshi, P.: Experimental study of rayleigh-benard convection at intermediate rayleigh numbers using interferometric tomography. Fluid Dyn. Res. 25(5), 231–255 (1999). https://doi.org/10.1016/S0169-5983(98)00044-6

    Article  Google Scholar 

  44. Mondal, S., Sibanda, P.: Effects of buoyancy ratio on unsteady double-diffusive natural convection in a cavity filled with porous medium with non-uniform boundary conditions. Int. J. Heat Mass Transf. 85, 401–413 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.129

    Article  Google Scholar 

  45. Nisar, K.S., Khan, U., Zaib, A., Khan, I., Baleanu, D.: Numerical simulation of mixed convection squeezing flow of a hybrid nanofluid containing magnetized ferroparticles in 50%:50% of ethylene glycol-water mixture base fluids between two disks with the presence of a non-linear thermal radiation heat flux. Front. Chem. 8, 792 (2020). https://doi.org/10.3389/fchem.2020.00792

    Article  Google Scholar 

  46. Niwa, S., Eswaramoorthy, M., Nair, J., Raj, A., Itoh, N., Shoji, H., Namba, T., Mizukami, F.: A one-step conversion of benzene to phenol with a Palladium membrane. Science 295(5552), 105–107 (2002). https://doi.org/10.1126/science.1066527

    Article  Google Scholar 

  47. Pal, J., Cramer, A., Grants, I., Eckert, S., Gerbeth, G.: Physical modelling of temperature fluctuations in a high aspect ratio model of the Czochralski crystal growth. J. Crystal Growth 432, 69–77 (2015). https://doi.org/10.1016/j.jcrysgro.2015.09.009

    Article  Google Scholar 

  48. Rahman, M.M., Öztop, H.F., Ahsan, A., Kalam, M.A., Varol, Y.: Double-diffusive natural convection in a triangular solar collector. Int. Commun. Heat Mass Transf. 39(2), 264–269 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2011.11.008

    Article  Google Scholar 

  49. Rahman, M.M., Öztop, H.F., Mekhilef, S., Saidur, R., Orfi, J.: Simulation of unsteady heat and mass transport with heatline and massline in a partially heated open cavity. Appl. Math. Model. 39(5–6), 1597–1615 (2015). https://doi.org/10.1016/j.apm.2014.09.022

    Article  MATH  Google Scholar 

  50. Sajjadi, H., Kefayati, G.H.R.: MHD turbulent and laminar natural convection in a square cavity utilizing lattice Boltzmann method. Heat Transf.-Asian Res. 45(8), 795–814 (2016). https://doi.org/10.1002/htj.21191

    Article  Google Scholar 

  51. Haq, S.U., Shah, S.I.A., Nisar, K.S., Jan, S.U., Khan, I.: Convection heat mass transfer and mhd flow over a vertical plate with chemical reaction, arbitrary shear stress and exponential heating. Sci. Rep. 11(1), 4265 (2021). https://doi.org/10.1038/s41598-021-81615-8

    Article  Google Scholar 

  52. Simo-Tagne, M., Bonoma, B., Bennamoun, L., Monkam, L., Léonard, A., Zoulalian, A., Rogaume, Y.: Modeling of coupled heat and mass transfer during drying of ebony wood using indirect natural convection solar dryer. Dry. Technol. (2019). https://doi.org/10.1080/07373937.2018.1544144

    Article  Google Scholar 

  53. Singh, R.J., Gohil, T.B.: The numerical analysis on the development of Lorentz force and its directional effect on the suppression of buoyancy-driven flow and heat transfer using OpenFOAM. Comput. Fluids 179, 476–489 (2019). https://doi.org/10.1016/j.compfluid.2018.11.017

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun, H., Lauriat, G., Sun, D.L., Tao, W.Q.: Transient double-diffusive convection in an enclosure with large density variations. Int. J. Heat Mass Transf. 53(4), 615–625 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.035

    Article  MATH  Google Scholar 

  55. Sun, Z.F., Yu, K.T.: Rayleigh-bénard-marangoni cellular convection: expressions for heat and mass transfer rates. Chem. Eng. Res. Des. 84(3), 185–191 (2006). https://doi.org/10.1205/cherd.05057

    Article  Google Scholar 

  56. Tan H, Song X, Zhang Y, He M (2017) The mass and heat transfer process through the door seal of refrigeration. Chin J Chem Eng 25(8), 1115–1119 https://doi.org/10.1016/j.cjche.2017.03.016

  57. Teamah, M.A.: Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source. Int. J. Therm. Sci. 47(3), 237–248 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.02.003

    Article  Google Scholar 

  58. Trevisan, O.V., Bejan, A.: Combined heat and mass transfer by natural convection in a vertical enclosure. J. Heat Transf. 109(1), 104–112 (1987). https://doi.org/10.1016/S0065-2717(08)70029-7

    Article  Google Scholar 

  59. Uddin, M.B., Rahman, M.M., Khan, M.A.H., Ibrahim, T.A.: Effect of buoyancy ratio on unsteady thermosolutal combined convection in a lid driven trapezoidal enclosure in the presence of magnetic field. Comput. Fluids 114, 284–296 (2015). https://doi.org/10.1016/j.compfluid.2015.03.017

    Article  MathSciNet  MATH  Google Scholar 

  60. Ullah, I., Alkanhal, T.A., Shafie, S., Nisar, K.S., Khan, I., Makinde, O.D.: Mhd slip flow of casson fluid along a nonlinear permeable stretching cylinder saturated in a porous medium with chemical reaction, viscous dissipation, and heat generation/absorption. Symmetry (2019). https://doi.org/10.3390/sym11040531

    Article  Google Scholar 

  61. Woods, L.C.: A note on the numerical solution of fourth order differential equations. Aeronaut. Q. 5(4), 176–184 (1954). https://doi.org/10.1017/S0001925900001177

    Article  MathSciNet  Google Scholar 

  62. Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.087

    Article  Google Scholar 

  63. Zhang, N., Liu, D.: Numerical simulation of MHD oscillatory mixed convection in CZ crystal growth by Lattice Boltzmann method. Results Phys. 10, 882–890 (2018). https://doi.org/10.1016/j.rinp.2018.08.002

    Article  Google Scholar 

  64. Zorrilla, S.E., Rubiolo, A.C.: Mathematical modeling for immersion chilling and freezing of foods: part I: model development. J. Food Eng. 66(3), 329–338 (2005). https://doi.org/10.1016/j.jfoodeng.2004.03.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwesh K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.K., Yadav, S. & Kushawaha, D. Simulation by Heat and Mass Lines Technique of Double-Diffusive Convection Under Magnetic Field of Exponentially Heated and Soluted Enclosure. Int. J. Appl. Comput. Math 7, 234 (2021). https://doi.org/10.1007/s40819-021-01189-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01189-x

Keywords

Mathematics Subject Classification

Navigation