Log in

Towards an Efficient Approach for Mamdani Interval Type-3 Fuzzy Inference Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is part of the increasing interest regarding the application of interval type-3 fuzzy logic in real-world problems, where a better handling of uncertainty can be useful in achieving enhanced results. The main contribution of this paper is the proposal of new methods, such as Interval Type-3 Reduction and a practical way for modeling Interval Type-3 Membership Functions, based on the Footprint of Uncertainty (FOU) and Core of Uncertainty (COU) concepts, which reduce the gap between the theory and the practical implementation of Mamdani Interval Type-3 Fuzzy Systems. The main aim of the paper is not proving the superiority of Interval Type-3 Fuzzy Systems but providing a framework and a comprehensive illustration of the theory concepts to help future research work in develo** optimization methodologies and new applications for this kind of systems, as well as finding their potential applicability, which can result from their ability in handling more complex uncertainty. Simulation results with two illustrative application examples show the potential of the presented approach in achieving an efficient implementation of Interval type-3 fuzzy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Amador-Angulo, L., Castillo, O., Castro, J.R., Melin, P.: A new approach for interval Type-3 fuzzy control of nonlinear plants. Int. J. Fuzzy Syst. 25, 1624–1642 (2023). https://doi.org/10.1007/s40815-023-01470-9

    Article  Google Scholar 

  2. Castillo, O., Castro, J.R., Melin, P.: Forecasting the COVID-19 with interval Type-3 fuzzy logic and the fractal dimension. Int. J. Fuzzy Syst. 25, 182–197 (2023). https://doi.org/10.1007/s40815-022-01351-7

    Article  Google Scholar 

  3. Castillo, O., Melin, P.: Interval Type-3 fuzzy decision-making in material surface quality control. In: Jabeen, S.D., Ali, J., Castillo, O. (eds.) Soft Computing and Optimization, pp. 157–169. Springer, Singapore (2022)

    Chapter  Google Scholar 

  4. Huang, H., Xu, H., Chen, F., Zhang, C., Mohammadzadeh, A.: An applied type-3 fuzzy logic system: practical Matlab Simulink and M-Files for robotic, control, and modeling applications. Symmetry. 15, 475 (2023). https://doi.org/10.3390/sym15020475

    Article  Google Scholar 

  5. Peraza, C., Castillo, O., Melin, P., Castro, J.R., Yoon, J.H., Geem, Z.W.: A Type-3 fuzzy parameter adjustment in harmony search for the parameterization of fuzzy controllers. Int. J. Fuzzy Syst. (2023). https://doi.org/10.1007/s40815-023-01499-w

    Article  Google Scholar 

  6. Taghieh, A., Mohammadzadeh, A., Zhang, C., Rathinasamy, S., Bekiros, S.: A novel adaptive interval type-3 neuro-fuzzy robust controller for nonlinear complex dynamical systems with inherent uncertainties. Nonlinear Dyn. 111, 411–425 (2023). https://doi.org/10.1007/s11071-022-07867-9

    Article  Google Scholar 

  7. Wang, J., Tavoosi, J., Mohammadzadeh, A., Mobayen, S., Asad, J.H., Assawinchaichote, W., Vu, M.T., Skruch, P.: Non-singleton Type-3 fuzzy approach for flowmeter fault detection: experimental study in a gas industry. Sensors. 21, 7419 (2021). https://doi.org/10.3390/s21217419

    Article  Google Scholar 

  8. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996). https://doi.org/10.1109/91.493904

    Article  Google Scholar 

  9. Bilgundi, S.K., Sachin, R., Pradeepa, H., Nagesh, H.B., Likith Kumar, M.V.: Grid power quality enhancement using an ANFIS optimized PI controller for DG. Prot. Control Mod. Power Syst. 7, 1–14 (2022). https://doi.org/10.1186/s41601-022-00225-2

    Article  Google Scholar 

  10. El-Hasnony, I.M., Barakat, S.I., Mostafa, R.R.: Optimized ANFIS model using hybrid metaheuristic algorithms for Parkinson’s disease prediction in IoT environment. IEEE Access. 8, 119252–119270 (2020). https://doi.org/10.1109/ACCESS.2020.3005614

    Article  Google Scholar 

  11. Muralikumar, K., Ponnambalam, P.: Comparison of fuzzy and ANFIS controllers for asymmetrical 31-level cascaded inverter with super imposed carrier PWM technique. IEEE Access. 9, 82630–82646 (2021). https://doi.org/10.1109/ACCESS.2021.3086674

    Article  Google Scholar 

  12. Pournazarian, B., Sangrody, R., Saeedian, M., Gomis-Bellmunt, O., Pouresmaeil, E.: Enhancing microgrid small-signal stability and reactive power sharing using ANFIS-tuned virtual inductances. IEEE Access. 9, 104915–104926 (2021). https://doi.org/10.1109/ACCESS.2021.3100248

    Article  Google Scholar 

  13. Vargas, O.S., De LeónAldaco, S.E., Alquicira, J.A., Vela-Valdés, L.G., Núñez, A.R.L.: Adaptive Network-Based Fuzzy Inference System (ANFIS) applied to inverters: a survey. IEEE Trans. Power Electron. 39, 869–884 (2024). https://doi.org/10.1109/TPEL.2023.3327014

    Article  Google Scholar 

  14. Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–127 (2002). https://doi.org/10.1109/91.995115

    Article  Google Scholar 

  15. Castillo, O., Melin, P., Valdez, F., Soria, J., Ontiveros-Robles, E., Peraza, C., Ochoa, P.: Shadowed Type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms. 12, 17 (2019). https://doi.org/10.3390/a12010017

    Article  Google Scholar 

  16. Phan, D., Bab-Hadiashar, A., Fayyazi, M., Hoseinnezhad, R., Jazar, R.N., Khayyam, H.: Interval Type 2 fuzzy logic control for energy management of hybrid electric autonomous vehicles. IEEE Trans. Intell. Veh. 6, 210–220 (2021). https://doi.org/10.1109/TIV.2020.3011954

    Article  Google Scholar 

  17. Kayacan, E., Kayacan, E., Ramon, H., Kaynak, O., Saeys, W.: Towards agrobots: trajectory control of an autonomous tractor using Type-2 fuzzy logic controllers. IEEEASME Trans. Mechatron. 20, 287–298 (2015). https://doi.org/10.1109/TMECH.2013.2291874

    Article  Google Scholar 

  18. Mo, H., Meng, Y., Wang, F.-Y., Wu, D.: Interval Type-2 fuzzy hierarchical adaptive cruise following-control for intelligent vehicles. IEEECAA J. Autom. Sin. 9, 1658–1672 (2022). https://doi.org/10.1109/JAS.2022.105806

    Article  Google Scholar 

  19. Pham, D.-H., Lin, C.-M., Giap, V.N., Huynh, T.-T., Cho, H.-Y.: Wavelet Interval Type-2 Takagi–Kang–Sugeno hybrid controller for time-series prediction and chaotic synchronization. IEEE Access. 10, 104313–104327 (2022). https://doi.org/10.1109/ACCESS.2022.3210260

    Article  Google Scholar 

  20. Hou, S., Chu, Y., Fei, J.: Robust intelligent control for a class of power-electronic converters using neuro-fuzzy learning mechanism. IEEE Trans. Power Electron. 36, 9441–9452 (2021). https://doi.org/10.1109/TPEL.2021.3049553

    Article  Google Scholar 

  21. Montazeri-Gh, M., Yazdani, S.: Application of interval type-2 fuzzy logic systems to gas turbine fault diagnosis. Appl. Soft Comput. 96, 106703 (2020). https://doi.org/10.1016/j.asoc.2020.106703

    Article  Google Scholar 

  22. Tao, X., Yi, J., Pu, Z., **ong, T.: Robust adaptive tracking Control for hypersonic vehicle based on interval type-2 fuzzy logic system and small-gain approach. IEEE Trans. Cybern. 51, 2504–2517 (2021). https://doi.org/10.1109/TCYB.2019.2927309

    Article  Google Scholar 

  23. Harirchian, E., Lahmer, T.: Improved rapid visual earthquake hazard safety evaluation of existing buildings using a type-2 fuzzy logic model. Appl. Sci. 10, 2375 (2020). https://doi.org/10.3390/app10072375

    Article  Google Scholar 

  24. Ontiveros-Robles, E., Castillo, O., Melin, P.: Towards asymmetric uncertainty modeling in designing General Type-2 Fuzzy classifiers for medical diagnosis. Expert Syst. Appl. 183, 115370 (2021). https://doi.org/10.1016/j.eswa.2021.115370

    Article  Google Scholar 

  25. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975). https://doi.org/10.1016/S0020-7373(75)80002-2

    Article  Google Scholar 

  26. Castillo, O., Castro, J.R., Melin, P.: Interval Type-3 Fuzzy Systems: Theory and Design. Springer, Cham (2022)

    Book  Google Scholar 

  27. Rickard, J.T., Aisbett, J., Gibbon, G.: Fuzzy subsethood for fuzzy sets of type-2 and generalized type- n. IEEE Trans. Fuzzy Syst. 17, 50–60 (2009). https://doi.org/10.1109/TFUZZ.2008.2006369

    Article  Google Scholar 

  28. Mendez, G.M., Lopez-Juarez, I., Montes-Dorantes, P.N., Garcia, M.A.: A new method for the design of interval type-3 fuzzy logic systems with uncertain type-2 non-singleton inputs (IT3 NSFLS-2): a case study in a hot strip mill. IEEE Access. 11, 44065–44081 (2023). https://doi.org/10.1109/ACCESS.2023.3272531

    Article  Google Scholar 

  29. Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., Band, S.S., Mosavi, A.: A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access. 9, 10498–10508 (2021). https://doi.org/10.1109/ACCESS.2021.3049301

    Article  Google Scholar 

  30. Wu, D., Mendel, J.M.: Enhanced Karnik–Mendel algorithms for interval type-2 fuzzy sets and systems. In: NAFIPS 2007—2007 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 184–189 (2007)

  31. Wagner, C., Hagras, H.: zSlices—towards bridging the gap between interval and general type-2 fuzzy logic. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 489–497 (2008)

  32. Ontiveros-Robles, E., Gonzalez-Vazquez, J.L., Castro, J.R., Castillo, O.: A hardware architecture for real-time edge detection based on interval type-2 fuzzy logic. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 804–810 (2016)

  33. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54, 175–201 (2018)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ontiveros, E., Melin, P. & Castillo, O. Towards an Efficient Approach for Mamdani Interval Type-3 Fuzzy Inference Systems. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01722-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-024-01722-2

Keywords

Navigation