Log in

Switching Fuzzy Adaptive Finite-Time Control of Nonlinear Systems via Event-Triggered Output Feedback Strategy

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a study on the finite-time tracking control problem for a class of nonstrict-feedback nonlinear systems with immeasurable states and unknown nonlinearities. To model the unknown functions, fuzzy logic system technique is employed and a state observer is proposed. Using this observer, an event-triggered finite-time output feedback control scheme is designed based on the backstep** method. The proposed controller guarantees finite-time convergence of the tracking error and boundedness of all states in the closed-loop system. Additionally, it reduces the computing burden and communication resources. A \(C^1\) switching function is introduced to overcome the singularity problem, and the Zeno behavior caused by the event-triggered strategy is avoided. Simulation results are presented to validate the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.: Systematic design of adaptive controllers for feedback linearizable systems. In: Proceedings of American Control Conference, pp. 649–654 (1991)

  2. Liang, H., Chen, L., Pan, Y., Lam, H.-K.: Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative-antagonistic interactions. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3200730

  3. Krstić, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  4. Zhou, J., Wen, C., Wang, W.: Adaptive control of uncertain nonlinear systems with quantized input signal. Automatica 95, 152–162 (2018)

    MathSciNet  Google Scholar 

  5. Li, Y.-X.: Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 106, 117–123 (2019)

    MathSciNet  Google Scholar 

  6. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    MathSciNet  Google Scholar 

  7. Hong, Y.G., Wang, J.K., Cheng, D.Z.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858–862 (2006)

    MathSciNet  Google Scholar 

  8. Liu, C.G., Liu, X.P., Wang, H.Q., Zhou, Y.C., Lu, S.Y.: Finite-time adaptive tracking control for unknown nonlinear systems with a novel barrier Lyapunov function. Inf. Sci. 528, 231–245 (2020)

    MathSciNet  Google Scholar 

  9. Li, J., Qian, C.J.: Global Finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans. Autom. Control 51(5), 879–886 (2006)

    MathSciNet  Google Scholar 

  10. Liu, Y.C., Zhu, Q.D.: Adaptive fuzzy finite-time control for nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 52(10), 10420–10429 (2022)

    PubMed  Google Scholar 

  11. Wang, H.Q., Liu, P.X.P., Zhao, X.D., Liu, X.P.: Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans. Cybern. 50(5), 1786–1797 (2020)

    PubMed  Google Scholar 

  12. Zhao, L., Yu, J., Wang, Q.-G.: Finite-time tracking control for nonlinear systems via adaptive neural output feedback and command filtered backstep**. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1474–1485 (2021)

    MathSciNet  PubMed  Google Scholar 

  13. Zhao, L., Liu, G., Yu, J.: Finite-Time adaptive fuzzy tracking control for a class of nonlinear systems with full-state constraints. IEEE Trans. Fuzzy Syst. 29(8), 2246–2255 (2021)

    Google Scholar 

  14. Walsh, G.C.: Scheduling of networked control systems. IEEE Control Syst. Mag. 95(1), 57–65 (2001)

    Google Scholar 

  15. Ne\(\check{s}\)i\(\acute{c}\), D., Teel, A.R.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Trans. Autom. Control. 49(7):1103–1122 (2004)

  16. Ding, L., Han, Q.L., Guo, G.: Network-based leader-following consensus for distributed multi-agent systems. Automatica 49(7), 2281–2286 (2013)

    MathSciNet  Google Scholar 

  17. Arzen, K.E.: A simple event-based PID controller. In: Proceedings of the 14th IFAC World Congress, Bei**g, China, pp. 423–428 (1999)

  18. \(A\)strom, K., Bernhardsson, B.: Comparison of periodic and event based sampling for first-order stochastic systems. In: Proceedings of the 14th IFAC World Congress, pp. 301–306 (1999)

  19. Wang, X.F., Lemmon, M.D.: Event-triggering in distributed networked control systems. IEEE Trans. Autom. Control 56(3), 586–601 (2011)

    MathSciNet  Google Scholar 

  20. **ng, L.T., Wen, C.Y., Liu, Z.T., Su, H.Y., Cai, J.P.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    MathSciNet  Google Scholar 

  21. Xu, B., Li, Y.-X., Hou, Z., Ahn, C.K.: Dynamic event-triggered reinforcement learning-based consensus tracking of nonlinear multi-agent systems. IEEE Trans. Circuit. Syst. Regul. Pap. 70(5), 2120–2132 (2023)

    Google Scholar 

  22. Cao, L., Cheng, Z., Liu, Y., Li, H.: Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Trans. Neural Netw. Learn. Sys. (2022). https://doi.org/10.1109/TNNLS.2022.3210269

    Article  PubMed  Google Scholar 

  23. Lu, K.X., Liu, Z., Lai, G.Y., Chen, C.L.P., Zhang, Y.: Adaptive fuzzy output feedback control for nonlinear systems based on event-triggered mechanism. Inf. Sci. 486, 419–433 (2019)

    MathSciNet  Google Scholar 

  24. Li, Y.-X., Tong, S.C., Yang, G.H.: Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans. Cybern. 50(7), 3104–3112 (2020)

    PubMed  Google Scholar 

  25. Wang, H.J., Zhang, D., Lu, R.Q.: Event-triggered H-infinity filter design for Markovian jump systems with quantization. Nonlinear Anal. Hybrid Syst 28, 23–41 (2018)

    MathSciNet  Google Scholar 

  26. Li, Y.-X., Hou, Z.S., Che, W.W., Wu, Z.G.: Event-based design of finite-time adaptive control of uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Sys. 33(8), 3804–3813 (2022)

    MathSciNet  PubMed  Google Scholar 

  27. Han, Y.C., Lian, J., Huang, X.: Event-triggered H-infinity control of networked switched systems subject to denial-of-service attacks. Nonlinear Anal. Hybrid Syst 38, 100930 (2020)

    MathSciNet  Google Scholar 

  28. Singh, P., Agrawal, P., Nandanwar, A., Behera, L., Verma, N.K., Nahavandi, S., Jamshidi, M.: Multivariable Event-triggered generalized super-twisting controller for safe navigation of nonholonomic mobile robot. IEEE Syst. J. 15(1), 454–465 (2021)

    ADS  Google Scholar 

  29. Luis, C.E., Vukosavljev, M., Schoellig, A.P.: Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robot. Autom. Lett. 5(2), 604–611 (2020)

    Google Scholar 

  30. Li, S., Li, Z., Li, J., Fernando, T., Lu, H.H.C., Wang, Q.L., Liu, X.D.: Application of event-triggered cubature Kalman filter for remote nonlinear state estimation in wireless sensor network. IEEE Trans. Ind. Electron. 68(6), 5133–5145 (2021)

    Google Scholar 

  31. **ng, L.T., Wen, C.Y., Liu, Z.T., Su, H.Y., Cai, J.P.: Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 64(1), 290–297 (2019)

    MathSciNet  Google Scholar 

  32. Sui, S., Tong, S.C., Li, Y.M.: Observer-based fuzzy adaptive prescribed performance tracking control for nonlinear stochastic systems with input saturation. Neurocomputing 158, 100–108 (2015)

    Google Scholar 

  33. Li, C., Wang, J., Lu, J.: Observer-based robust stabilisation of a class of non-linear fractional-order uncertain systems: an linear matrix inequalitie approach. IET Control Theory Appl. 6(18), 2757–2764 (2012)

    MathSciNet  Google Scholar 

  34. Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    MathSciNet  Google Scholar 

  35. Wang, Y.J., Song, Y.D., Krstić, M., Wen, C.Y.: Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica 63, 374–383 (2016)

    MathSciNet  Google Scholar 

  36. Mohammadzadeh, A., Castillo, O., Band, S.S., Mosavi, A.: A novel fractional-order multiple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 23(6), 1633–1651 (2021)

    Google Scholar 

  37. Qing, H., Yang, H., Sun, Y., Zhang, Y.: Adaptive interval type-2 fuzzy fixed-time control for underwater walking robot with error constraints and actuator faults using prescribed performance terminal sliding-mode surfaces. Int. J. Fuzzy Syst. 23(4), 1137–1149 (2020)

    Google Scholar 

  38. Yang, Y., Xu, C.-Z.: Adaptive fuzzy leader-follower synchronization of constrained heterogeneous multiagent systems. IEEE Trans. Fuzzy Syst. 30(1), 205–219 (2022)

    Google Scholar 

  39. Zhou, Q., Shi, P., Lu, J., Xu, S.: Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19(5), 972–982 (2011)

    Google Scholar 

  40. Tong, S.C., Min, X., Li, Y.X.: Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Trans. Cybern. 50(9), 3903–3913 (2020)

    PubMed  Google Scholar 

  41. Cao, L., Zhou, Q., Dong, G.W., Li, H.Y.: Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1380–1391 (2021)

    Google Scholar 

  42. Sun, J., He, H., Yi, J., Pu, Z.: Finite-time command-filtered composite adaptive neural control of uncertain nonlinear systems. IEEE Trans. Cybern. 52(7), 6809–6821 (2022)

    PubMed  Google Scholar 

  43. Zhao, W., Yu, W.W., Zhang, H.P.: Event-triggered optimal consensus tracking control for multi-agent systems with unknown internal states and disturbances. Nonlinear Anal. Hybrid Syst. 33, 227–248 (2019)

    MathSciNet  Google Scholar 

  44. Huang, X.Q., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)

    MathSciNet  CAS  Google Scholar 

  45. Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858–862 (2006)

    MathSciNet  Google Scholar 

  46. Huang, J.S., Wen, C.Y., Wang, W., Song, Y.D.: Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications. Automatica 69, 395–404 (2016)

    MathSciNet  Google Scholar 

  47. Sun, Z.-Y., Zhou, C., Liu, Z.-G., Meng, Q.: Fast finite-time adaptive event-triggered tracking for uncertain nonlinear systems. Int. J. Robust Nonlinear Control 30(17), 7806–7821 (2020)

    MathSciNet  Google Scholar 

  48. Liu, W., Ma, Q., Xu, S., Zhang, Z.: Adaptive finite-time event-triggered control for nonlinear systems with quantized input signals. Int. J. Robust Nonlinear Control 31(10), 4764–4781 (2021)

    MathSciNet  Google Scholar 

  49. Gao, C., Liu, X., Yang, Y., Liu, X., Li, P.: Event-triggered finite-time adaptive neural control for nonlinear non-strict-feedback time-delay systems with disturbances. Inf. Sci. 536, 1–24 (2020)

    MathSciNet  Google Scholar 

  50. Li, Y.-X., Yang, G.-H.: Observer-based fuzzy adaptive event-triggered control co-design for a class of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1589–1599 (2018)

    Google Scholar 

  51. Chen, B., Liu, X.P., Liu, K.F., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45, 1530–1535 (2009)

    MathSciNet  Google Scholar 

  52. Wang, A., Liu, L., Qiu, J., Feng, G.: Finite-time adaptive fuzzy control for nonstrict-feedback nonlinear systems via an event-triggered strategy. IEEE Trans. Fuzzy Syst. 28(9), 2164–2174 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Funds of National Science of China (Grant 62373176, Grant No. 61973146), in part by the Applied Basic Research Program in Liaoning Province (No. 2022JH2/101300276);and in part by Taishan Scholar Project of Shandong Province of China under Grant tsqn201909097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-**n Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Proof of Lemma 5

$$\begin{aligned}{} & {} -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \dot{\hat{\Theta }} \nonumber \\\,=\, & {} -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{i=1}^{n}\frac{h_{1}z_{i}^{2}}{2\eta _{i}^{2}\phi _{i}^{T}\phi _{i}}-\sigma _{11}\hat{\Theta }-\sigma _{12}\hat{\Theta }^{r}\right) \nonumber \\\,=\, & {} \sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sigma _{11}\hat{\Theta }+\sigma _{12}\hat{\Theta }^{r}\right) -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{i=1}^{n}\frac{h_{1}z_{i}^{2}}{2\eta _{i}^{2}\phi _{i}^{T}\phi _{i}}\right) \nonumber \\\,=\, & {} \sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sigma _{11}\hat{\Theta }+\sigma _{12}\hat{\Theta }^{r}\right) \nonumber \\{} & {} -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{j=1}^{i-1}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}}+\sum _{j=i}^{n}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}}\right) \nonumber \\\,=\, & {} \sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sigma _{11}\hat{\Theta }+\sigma _{12}\hat{\Theta }^{r}\right) -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{j=1}^{i-1}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}}\right) \nonumber \\{} & {} -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{j=i}^{n}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}}\right) \end{aligned}$$
(105)

\(\square\)

With the help of the sequence rearrangement, we have

$$\begin{aligned}{} & {} -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{j=i}^{n}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}}\right) \nonumber \\\le & {} \left| z_{2}\frac{\partial \alpha _{1}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{2}^{2}}{2\eta _{2}^{2}\phi _{2}^{T}\phi _{2}} +\left| z_{2}\frac{\partial \alpha _{1}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{3}^{2}}{2\eta _{3}^{2}\phi _{3}^{T}\phi _{3}} \nonumber \\{} & {} +...+\left| z_{2}\frac{\partial \alpha _{1}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{n}^{2}}{2\eta _{n}^{2}\phi _{n}^{T}\phi _{n}} \nonumber \\{} & {} +\left| z_{3}\frac{\partial \alpha _{2}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{3}^{2}}{2\eta _{3}^{2}\phi _{2}^{T}\phi _{2}} +\left| z_{3}\frac{\partial \alpha _{2}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{4}^{2}}{2\eta _{4}^{2}} \nonumber \\{} & {} +...+\left| z_{3}\frac{\partial \alpha _{2}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{n}^{2}}{2\eta _{n}^{2}\phi _{n}^{T}\phi _{n}} \nonumber \\{} & {} +...+\left| z_{n-1}\frac{\partial \alpha _{n-1}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{n-1}^{2}}{2\eta _{n-1}^{2}\phi _{n-1}^{T}\phi _{n-1}} \nonumber \\{} & {} +\left| z_{n-1}\frac{\partial \alpha _{n-1}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{n}^{2}}{2\eta _{n}^{2}\phi _{n}^{T}\phi _{n}} +\left| z_{n}\frac{\partial \alpha _{n}}{\partial \hat{\Theta }} \right| \frac{h_{1}z_{n}^{2}}{2\eta _{n}^{2}\phi _{n}^{T}\phi _{n}}\nonumber \\{} & {} =\sum _{i=2}^{n}\frac{h_{1}z_{i}^{2}}{2\eta _{i}^{2}\phi _{i}^{T}\phi _{i}} \left( \sum _{j=2}^{i}\left| z_{j}\frac{\partial \alpha _{j-1}}{\partial \hat{\Theta }}\right| \right) \end{aligned}$$
(106)

which indicates

$$\begin{aligned}{} & {} -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \dot{\hat{\Theta }} \nonumber \\\le & {} \sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta } }\left( \sigma _{11}\hat{\Theta }+\sigma _{12}\hat{\Theta }^{r}\right) -\sum _{i=2}^{n}z_{i}\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sum _{j=1}^{i-1}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}}\right) \nonumber \\{} & {} +\sum _{i=2}^{n}\frac{h_{1}z_{i}^{2}}{2\eta _{i}^{2}\phi _{i}^{T}\phi _{i}} \left( \sum _{j=2}^{i}\left| z_{j}\frac{\partial \alpha _{j-1}}{\partial \hat{\Theta }}\right| \right) \nonumber \\\,=\, & {} \sum _{i=2}^{n}z_{i}\Bigg (\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }} \left( \sigma _{11}\hat{\Theta }+\sigma _{12}\hat{\Theta }^{r}\right) -\frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }}\left( \sum _{j=1}^{i-1}\frac{h_{1}z_{j}^{2}}{2\eta _{j}^{2}\phi _{j}^{T}\phi _{j}} \right) \nonumber \\{} & {} +\frac{h_{1}z_{i}}{2\eta _{i}^{2}\phi _{i}^{T}\phi _{i}}\left( \sum _{j=2}^{i}\left| z_{j}\frac{\partial \alpha _{j-1}}{\partial \hat{\Theta }}\right| \right) \Bigg ) \nonumber \\\,=\, & {} -\sum _{i=2}^{n}z_{i}\sigma _{i} \end{aligned}$$
(107)

Therefore, it can be concluded that \(\sum _{i=2}^{n}z_{i}\left( \sigma _{i}- \frac{\partial \alpha _{i-1}}{\partial \hat{\Theta }}\dot{\hat{\Theta }}\right)\) is non-positive.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Li, YX. Switching Fuzzy Adaptive Finite-Time Control of Nonlinear Systems via Event-Triggered Output Feedback Strategy. Int. J. Fuzzy Syst. 26, 304–319 (2024). https://doi.org/10.1007/s40815-023-01598-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01598-8

Keywords

Navigation