Log in

Fault-Tolerant Control for Robotic Systems Using a Wavelet Type-2 Fuzzy Brain Emotional Learning Controller and a TOPSIS-Based Self-organizing Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

To improve control performance in robotic systems with faults and unknown uncertainties, a fault-tolerant control (FTC) system based on a wavelet type-2 fuzzy brain emotional learning controller (WT2FBC) is developed in this research. Type-2 fuzzy logic systems can handle uncertainties better than type-1 fuzzy logic systems, so they can solve some uncertain complex problems more accurate. Given its fast learning and problem-solving capabilities, the proposed WT2FBC is an important fuzzy neural network. The next step is to investigate how a WT2FBC-based FTC system can help solve the puzzles that plague the robotic systems. To achieve FTC, a control system with a computed torque controller and the WT2FBC estimator is provided. If the robotic system ever exhibits faults, it can consult an online fault estimator built on WT2FBC, and then compensates the faults. For more efficient, the total number of fuzzy rules of WT2FBC can be dynamically adjusted using a self-organizing algorithm based on the technique for order of preference by similarity to ideal solution. Simulations of a biped robot and a two-link manipulator robot have demonstrated the effectiveness of the proposed control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., Schröder, J.: Diagnosis and Fault-Tolerant Control. Springer, New York (2006)

    MATH  Google Scholar 

  2. Khalastchi, E., Kalech, M.: On fault detection and diagnosis in robotic systems. ACM Comput. Surv. 51(1), 1–24 (2018)

    Article  Google Scholar 

  3. Hwang, C.-L., Yu, W.-S.: Tracking and cooperative designs of robot manipulators using adaptive fixed-time fault-tolerant constraint control. IEEE Access 8, 56415–56428 (2020)

    Article  Google Scholar 

  4. Zhang, Y., Zhu, W., Rosendo, A.: QR code-based self-calibration for a fault-tolerant industrial robot arm. IEEE Access 7, 73349–73356 (2019)

    Article  Google Scholar 

  5. Wu, H.-M., Karkoub, M.: Hierarchical fuzzy sliding-mode adaptive control for the trajectory tracking of differential-driven mobile robots. Int. J. Fuzzy Syst. 21(1), 33–49 (2019)

    Article  MathSciNet  Google Scholar 

  6. Li, K., Wen, R.: Robust control of a walking robot system and controller design. Procedia Eng. 174, 947–955 (2017)

    Article  Google Scholar 

  7. Taherkhorsandi, M., Mahmoodabadi, M., Talebipour, M., Castillo-Villar, K.: Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization. Nonlinear Dyn. 79(1), 251–263 (2015)

    Article  Google Scholar 

  8. Gil, C.R., Calvo, H., Sossa, H.: Learning an efficient gait cycle of a biped robot based on reinforcement learning and artificial neural networks. Appl. Sci. 9(3), 502 (2019)

    Article  Google Scholar 

  9. Fuentes-Alvarez, R., et al.: Assistive robotic exoskeleton using recurrent neural networks for decision taking for the robust trajectory tracking. Expert Syst. Appl. 193, 116482 (2022)

    Article  Google Scholar 

  10. Lin, J.-L., Hwang, K.-S., Jiang, W.-C., Chen, Y.-J.: Gait balance and acceleration of a biped robot based on Q-learning. IEEE Access 4, 2439–2449 (2016)

    Article  Google Scholar 

  11. Lin, C.-M., Ramarao, R., Gopalai, S.-H.: Self-organizing adaptive fuzzy brain emotional learning control for nonlinear systems. Int. J. Fuzzy Syst. 21(7), 1989–2007 (2019)

    Article  MathSciNet  Google Scholar 

  12. Huynh, T.T., Lin, C.M., Le, T.L., Vu, V.P., Chao, F.: Self-organizing double function-link fuzzy brain emotional control system design for uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 52(3), 1852–1868 (2020)

    Article  Google Scholar 

  13. Lin, C.-M., Chen, C.-H.: Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller. IEEE Trans. Syst. Man Cybern. 37(1), 110–123 (2007)

    Article  Google Scholar 

  14. Lin, C.-M., Boldbaatar, E.-A.: Fault accommodation control for a biped robot using a recurrent wavelet Elman neural network. IEEE Syst. J. 11(4), 2882–2893 (2015)

    Article  Google Scholar 

  15. Sabzehzar, A., Shan, W., Panahi, M.S., Saremi, O.: An improved extended classifier system for the real-time-input real-time-output (XCSRR) stability control of a biped robot. Procedia Comput. Sci. 61, 492–499 (2015)

    Article  Google Scholar 

  16. Zhang, S., Yang, P., Kong, L., Chen, W., Fu, Q., Peng, K.: Neural networks-based fault tolerant control of a robot via fast terminal sliding mode. IEEE Trans. Syst. Man Cybern. Syst. 51(7), 4091–4101 (2021)

    Article  Google Scholar 

  17. Furukawa, J.-I., Noda, T., Teramae, T., Morimoto, J.: Fault tolerant approach for biosignal-based robot control. Adv. Robot. 29(7), 505–514 (2015)

    Article  Google Scholar 

  18. Vemuri, A.T., Polycarpou, M.M.: Neural-network-based robust fault diagnosis in robotic systems. IEEE Trans. Neural Netw. 8(6), 1410–1420 (1997)

    Article  Google Scholar 

  19. Nguyen, V.-C., Vo, A.-T., Kang, H.-J.: A finite-time fault-tolerant control using non-singular fast terminal sliding mode control and third-order sliding mode observer for robotic manipulators. IEEE Access 9, 31225–31235 (2021). https://doi.org/10.1109/ACCESS.2021.3059897

    Article  Google Scholar 

  20. Wu, Y., Yao, L.: Fault diagnosis and fault tolerant control for manipulator with actuator multiplicative fault. Int. J. Control Automat. Syst. 19, 980–987 (2021)

    Article  Google Scholar 

  21. LeDoux, J.E., Phelps, E.: A: Emotional networks in the brain. In: Lewis, M., Haviland-Jones, J.M., Barrett, L.F. (eds.) Handbook of Emotions, pp. 159–179. Guilford Press, New York (2008)

    Google Scholar 

  22. Dolan, R.J.: The human amygdala and orbital prefrontal cortex in behavioural regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1481), 787–799 (2007)

    Article  Google Scholar 

  23. Moren, J.: Emotion and learning: a computational model of the amygdala. Cybern. Syst. 32(6), 611–636 (2001)

    Article  MATH  Google Scholar 

  24. Guo, G.L., Lin, C.M., Cho, H.Y., Pham, D.H., Huynh, T.T., Chao, F.: Decoupled sliding mode control of underactuated nonlinear systems using a fuzzy brain emotional cerebellar model control system. Int. J. Fuzzy Syst. 25, 15–28 (2022). https://doi.org/10.1007/s40815-022-01378-w

    Article  Google Scholar 

  25. Nguyen, H.B., Lin, C.M., Huynh, T.T., Cho, H.Y., Pham, D.H., Chao, F., Thanh, H.L.N.N.: Fuzzy hybrid neural network control for uncertainty nonlinear systems based on enhancement search algorithm. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-022-01374-0

    Article  Google Scholar 

  26. Lin, C.-M., Pham, D.-H., Huynh, T.-T.: Encryption and decryption of audio signal and image secure communications using chaotic system synchronization control by tsk fuzzy brain emotional learning controllers. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2021.3134245

    Article  Google Scholar 

  27. Lin, C.-M., Pham, D.-H., Huynh, T.-T.: Synchronization of chaotic system using a brain-imitated neural network controller and its applications for secure communications. IEEE Access 9, 75923–75944 (2021). https://doi.org/10.1109/ACCESS.2021.3080696

    Article  Google Scholar 

  28. Zhou, H., Zhang, Y., Duan, W., Zhao, H.: Nonlinear systems modelling based on self-organizing fuzzy neural network with hierarchical pruning scheme. Appl. Soft Comput. 95, 106516 (2020)

    Article  Google Scholar 

  29. Huynh, T.-T., Lin, C.-M., Le, T.-L., Cho, H.-Y., Pham, T.-T.T., Chao, F.: A new self-organizing fuzzy cerebellar model articulation controller for uncertain nonlinear systems using overlapped Gaussian membership functions. IEEE Trans. Ind. Electron. 67(11), 9671–9682 (2019)

    Article  Google Scholar 

  30. Huynh, T.-T., Le, T.-L., Lin, C.-M.: A TOPSIS multi-criteria decision method-based intelligent recurrent wavelet CMAC control system design for MIMO uncertain nonlinear systems. Neural Comput. Appl. 32(8), 4025–4043 (2020)

    Article  Google Scholar 

  31. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Englewood Cliffs (2001)

    MATH  Google Scholar 

  32. Sun, M.: A Barbalat-like lemma with its application to learning control. IEEE Trans. Autom. Control 54(9), 2222–2225 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pham, D.-H., Lin, C.-M., Giap, V.N., Huynh, T.-T., Cho, H.-Y.: Wavelet interval type-2 Takagi-Kang-Sugeno hybrid controller for time-series prediction and chaotic synchronization. IEEE Access 10, 104313–104327 (2022). https://doi.org/10.1109/ACCESS.2022.3210260

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of Taiwan, under Grant: MOST 109-2221-E-155-027-MY3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duc-Hung Pham or Chih-Min Lin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, DH., Huynh, TT. & Lin, CM. Fault-Tolerant Control for Robotic Systems Using a Wavelet Type-2 Fuzzy Brain Emotional Learning Controller and a TOPSIS-Based Self-organizing Algorithm. Int. J. Fuzzy Syst. 25, 1727–1741 (2023). https://doi.org/10.1007/s40815-023-01516-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01516-y

Keywords

Navigation