Log in

A Tribological and Electrochemical Study of Protic Ionic Liquid and Bentonite Particles Used as Lubricating Additives in Water-Based Lubricants

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The objective of this work is to evaluate the wear and corrosion behaviours of different formulations of water-based lubricants containing protic ionic liquid (PIL) and bentonite particle additions. Carbon-steel samples were investigated in the normalized and quenched-tempered conditions. Wear tests and corrosion tests using potentiondynamic polarization curves were performed in the presence of different lubricant solutions (PIL 3 wt% + deionized water, with 0.05 wt% and 0.1 wt% bentonite particle additions). Wear scar surfaces were analysed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and Raman techniques. Unexpected electrochemical effects caused by the bentonite addition promoted the formation of a thick oxide film (Fe3O4) in the quenched-tempered steel during the wear test, which mitigated the wear in the presence of a minimum amount of this particle in the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Rahman MH, Warneke H, Webbert H et al (2021) Water-based lubricants: development, properties, and performances. Lubricants 9:73. https://doi.org/10.3390/lubricants9080073

    Article  CAS  Google Scholar 

  2. Rojas-Campanur M, Lara-Romero J, Chiñas-Castillo F, Alonso-Nuñez G (2007) Tribological performance of rosin acid additives in water based lubricants. Tribol Online 2:29–33. https://doi.org/10.2474/trol.2.29

    Article  Google Scholar 

  3. Rodrigues AO, Angélica RS, Paz SPA (2021) DIFERENCIAÇÃO CATIÔNICA DE BENTONITAS POR INFRAVERMELHO: UM ESTUDO DOS EFEITOS DA HIDRATAÇÃO DOS CÁTIONS TROCÁVEIS. Quím Nova 44:272–277. https://doi.org/10.21577/0100-4042.20170705

    Article  CAS  Google Scholar 

  4. Luz AB da, Lins FAF (2008) Rochas & minerais industriais: usos e especificações. CETEM/MCT

  5. Namli M, Guler E (2017) Effect of bentonite slurry pressure on interface friction of pipe jacking. J Pipeline Syst Eng Pract 8:04016016. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000255

    Article  Google Scholar 

  6. Coelho ACV, de Santos PS, de Santos HS (2007) Argilas especiais: argilas quimicamente modificadas - uma revisão. Quím Nova 30:1282–1294. https://doi.org/10.1590/S0100-40422007000500042

  7. Guillaume D (2002) Etude expérimentale du système fer-smectite en présence de solution à 80°C et 300°C. Université Henri Poincaré - Nancy, Phdthesis, p 1

    Google Scholar 

  8. Combarieu G de, Minet Y, Godon N, Barboux P (2005) Iron corrosion in Callovo-Oxfordian argilite

  9. de Combarieu G, Barboux P, Minet Y (2007) Iron corrosion in callovo-oxfordian argilite: from experiments to thermodynamic/kinetic modelling. Phys Chem Earth Parts A/B/C 32:346–358. https://doi.org/10.1016/j.pce.2006.04.019

    Article  Google Scholar 

  10. Gaudin A, Gaboreau S, Tinseau E et al (2009) Mineralogical reactions in the Tournemire argillite after in-situ interaction with steels. Appl Clay Sci 43:196–207. https://doi.org/10.1016/j.clay.2008.08.007

    Article  CAS  Google Scholar 

  11. Khan A, Gusain R, Sahai M, Khatri OP (2019) Fatty acids-derived protic ionic liquids as lubricant additive to synthetic lube base oil for enhancement of tribological properties. J Mol Liq 293:111444. https://doi.org/10.1016/j.molliq.2019.111444

    Article  CAS  Google Scholar 

  12. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580. https://doi.org/10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  13. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562

    Article  CAS  Google Scholar 

  14. Liu H, Yu H (2019) Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol 35:674–686. https://doi.org/10.1016/j.jmst.2018.10.007

    Article  CAS  Google Scholar 

  15. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. https://doi.org/10.1038/nmat2448

    Article  CAS  Google Scholar 

  16. Ye C, Liu W, Chen Y, Yu L (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun. https://doi.org/10.1039/B106935G

    Article  Google Scholar 

  17. Pejaković V, Kronberger M, Mahrova M et al (2012) Pyrrolidinium sulfate and ammonium sulfate ionic liquids as lubricant additives for steel/steel contact lubrication. Proc Inst Mech Eng Part J 226:923–932. https://doi.org/10.1177/1350650112448978

    Article  CAS  Google Scholar 

  18. Del Sol I, Gámez AJ, Rivero A, Iglesias P (2019) Tribological performance of ionic liquids as additives of water-based cutting fluids. Wear 426–427:845–852. https://doi.org/10.1016/j.wear.2019.01.109

    Article  CAS  Google Scholar 

  19. Guo H, Iglesias P (2021) Tribological behavior of ammonium-based protic ionic liquid as lubricant additive. Friction 9:169–178. https://doi.org/10.1007/s40544-020-0378-z

    Article  CAS  Google Scholar 

  20. Duan Z, Gu Y, Zhang J et al (2006) Protic pyridinium ionic liquids: synthesis, acidity determination and their performances for acid catalysis. J Mol Catal A 250:163–168. https://doi.org/10.1016/j.molcata.2006.01.035

    Article  CAS  Google Scholar 

  21. Madankar CS, Pradhan S, Naik SN (2013) Parametric study of reactive extraction of castor seed (Ricinus communis L.) for methyl ester production and its potential use as bio lubricant. Ind Crops Prod 43:283–290. https://doi.org/10.1016/j.indcrop.2012.07.010

    Article  CAS  Google Scholar 

  22. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237. https://doi.org/10.1021/cr068040u

    Article  CAS  Google Scholar 

  23. Chen H, Cai T, Li H et al (2023) Macroscale superlubricity of steel by polymer-based ionic liquids without a running-in period. Tribol Int 182:8349. https://doi.org/10.1016/j.triboint.2023.108349

    Article  CAS  Google Scholar 

  24. Kreivaitis R, Gumbytė M, Kupčinskas A et al (2023) Tribological properties of protic ionic liquid as an additive in aqueous glycerol solution for ruby-bearing steel tribo-contact. Lubricants 11:34. https://doi.org/10.3390/lubricants11010034

    Article  CAS  Google Scholar 

  25. Donato MT, Deuermeier J, Colaço R et al (2023) New protic ionic liquids as potential additives to lubricate Si-based MEMS/NEMS. Molecules 28:2678. https://doi.org/10.3390/molecules28062678

    Article  CAS  Google Scholar 

  26. Ortega Vega MR, Ercolani J, Mattedi S et al (2018) Oleate-based protic ionic liquids as lubricants for aluminum 1100. Ind Eng Chem Res 57:12386–12396. https://doi.org/10.1021/acs.iecr.8b02426

    Article  CAS  Google Scholar 

  27. Saurín N, Avilés MD, Espinosa T et al (2017) Carbon nanophases in ordered nanofluid lubricants. Wear 376–377:747–755. https://doi.org/10.1016/j.wear.2017.01.008

    Article  CAS  Google Scholar 

  28. Pamies R, Avilés MD, Arias-Pardilla J et al (2018) Antiwear performance of ionic liquid+graphene dispersions with anomalous viscosity-temperature behavior. Tribol Int 122:200–209. https://doi.org/10.1016/j.triboint.2018.02.020

    Article  CAS  Google Scholar 

  29. Zhang L, Pu J, Wang L, Xue Q (2014) Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum. Carbon 80:734–745. https://doi.org/10.1016/j.carbon.2014.09.022

    Article  CAS  Google Scholar 

  30. Avilés MD, Carrión-Vilches FJ, Sanes J, Bermúdez MD (2019) Diprotic ammonium succinate ionic liquid in thin film aqueous lubrication and in graphene nanolubricant. Tribol Lett 67:26. https://doi.org/10.1007/s11249-019-1138-y

    Article  CAS  Google Scholar 

  31. Arcifa A, Rossi A, Ramakrishna SN et al (2018) Lubrication of Si-based tribopairs with a hydrophobic ionic liquid: the multiscale influence of water. J Phys Chem C 122:7331–7343. https://doi.org/10.1021/acs.jpcc.8b01671

    Article  CAS  Google Scholar 

  32. Espinosa T, Jiménez M, Sanes J et al (2014) Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire-stainless steel interface. Tribol Lett 53:1–9. https://doi.org/10.1007/s11249-013-0238-3

    Article  CAS  Google Scholar 

  33. de Castro VV, dos Santos LM, Antonini LM et al (2023) Water-based lubricant containing protic ionic liquids and talc lubricant particles: Wear and corrosion analysis. Wear. https://doi.org/10.1016/j.wear.2023.204633

    Article  Google Scholar 

  34. Schmitzhaus TE, Ortega Vega MR, Schroeder R, et al (2020) An amino‐based protic ionic liquid as a corrosion inhibitor of mild steel in aqueous chloride solutions. Mater Corros maco.201911347. https://doi.org/10.1002/maco.201911347

  35. Schmitzhaus TE, Ortega Vega MR, Schroeder R et al (2020) N-methyl-2-hydroxyethylammonium oleate ionic liquid performance as corrosion inhibitor for mild steel in hydrochloric acid medium. Mater Corros 71:1885–1902. https://doi.org/10.1002/maco.202011709

    Article  CAS  Google Scholar 

  36. Schmitzhaus TE, Vega MRO, Schroeder R et al (2022) Localized corrosion behavior studies by SVET of 1010 steel in different concentrations of sodium chloride containing [m-2HEA][Ol] ionic liquid as corrosion inhibitor. Electrochim Acta 419:140385

    Article  CAS  Google Scholar 

  37. Ortega Vega MR, Baldin EK, Pereira DP et al (2021) Toxicity of oleate-based amino protic ionic liquids towards Escherichia coli, Danio rerio embryos and human skin cells. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.126896

    Article  Google Scholar 

  38. Iglesias M, Gonzalez-Olmos R, Cota I, Medina F (2010) Brønsted ionic liquids: Study of physico-chemical properties and catalytic activity in aldol condensations. Chem Eng J 162:802–808. https://doi.org/10.1016/j.cej.2010.06.008

    Article  CAS  Google Scholar 

  39. Mattedi S, Carvalho PJ, Coutinho JAP et al (2011) High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids. J Supercrit Fluids 56:224–230. https://doi.org/10.1016/j.supflu.2010.10.043

    Article  CAS  Google Scholar 

  40. ASTM G102 (1994) ASTM G102-89(2015)e1 Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. https://www.astm.org/Standards/G102. Accessed 8 Nov 2021

  41. ASTM G133 (2016) Test method for linearly reciprocating ball-on-flat sliding wear. ASTM International, Washington, DC

    Google Scholar 

  42. Nakayama K, Martin J-M (2006) Tribochemical reactions at and in the vicinity of a sliding contact. Wear 261:235–240. https://doi.org/10.1016/j.wear.2005.10.012

    Article  CAS  Google Scholar 

  43. Guo H, Smith T, Iglesias P (2019) The study of hexanoate-based protic ionic liquids used as lubricants in steel-steel contact. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112208

    Article  Google Scholar 

  44. Qu J, Blau PJ, Dai S et al (2009) Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol Lett 35:181–189. https://doi.org/10.1007/s11249-009-9447-1

    Article  CAS  Google Scholar 

  45. Tang Z, Li S (2014) A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr Opin Solid State Mater Sci 18:119–139. https://doi.org/10.1016/j.cossms.2014.02.002

    Article  CAS  Google Scholar 

  46. Spikes HA (2002) Film-forming additives—direct and indirect ways to reduce friction. Lubr Sci 14:147–167. https://doi.org/10.1002/ls.3010140204

    Article  CAS  Google Scholar 

  47. BaruelI AF, DutraI RCL, Baldan MR et al (2018) Organofilização e silanização de argila bentonita. Quim Nova 41:134–139. https://doi.org/10.21577/0100-4042.20170160

    Article  CAS  Google Scholar 

  48. Garnica AIC, da Curbelo FDS, Magalhães RR, de Sousa RPF (2018) EFEITOS DE SURFACTANTES NA ORGANOFILIZAÇÃO DE ARGILAS BENTONÍTICAS PARA USO EM FLUIDOS DE PERFURAÇÃO DE BASE MICROEMULSIONADA. HOLOS 4:89–105. https://doi.org/10.15628/holos.2018.7089

    Article  Google Scholar 

  49. Bertuol K (2020) Estudo do efeito sinérgico cavitação/erosão em revestimentos de carboneto de cromo e tungstênio depositados por aspersão térmica de alta velocidade. Study of synergistic cavitation/erosion effect on chromium and tungsten carbide coatings deposited by high velocity oxy-fuel

  50. Cavalcante M da S, Angélica RS (2014) Organofilização de uma Mg-bentonita da bacia do Parnaíba-Sul do Maranhão e sua utilização em poli (metacrilato de metila)

  51. Álvarez VH, Mattedi S, Martin-Pastor M et al (2010) Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion. Fluid Phase Equilib 299:42–50. https://doi.org/10.1016/j.fluid.2010.08.022

    Article  CAS  Google Scholar 

  52. Katiyar PK, Misra S, Mondal K (2019) Comparative corrosion behavior of five microstructures (pearlite, bainite, spheroidized, martensite, and tempered martensite) made from a high carbon steel. Metall Mater Trans A 50:1489–1501. https://doi.org/10.1007/s11661-018-5086-1

    Article  CAS  Google Scholar 

  53. Clover D, Kinsella B, Pejcic B, De Marco R (2005) The influence of microstructure on the corrosion rate of various carbon steels. J Appl Electrochem 35:139–149. https://doi.org/10.1007/s10800-004-6207-7

    Article  CAS  Google Scholar 

  54. Jeannin M, Calonnec D, Sabot R, Refait Ph (2010) Role of a clay sediment deposit on the corrosion of carbon steel in 0.5molL−1 NaCl solutions. Corros Sci 52:2026–2034. https://doi.org/10.1016/j.corsci.2010.02.033

    Article  CAS  Google Scholar 

  55. Golubev SV, Bauer A, Pokrovsky OS (2006) Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C. Geochim Cosmochim Acta 70:4436–4451. https://doi.org/10.1016/j.gca.2006.06.1557

    Article  CAS  Google Scholar 

  56. Akbulut M (2012) Nanoparticle-based lubrication systems. J Powder Metall Min. https://doi.org/10.4172/2168-9806.1000e101

    Article  Google Scholar 

  57. **ao H, Guo D, Liu S et al (2011) Film thickness of ionic liquids under high contact pressures as a function of alkyl chain length. Tribol Lett 41:471–477. https://doi.org/10.1007/s11249-010-9729-7

    Article  CAS  Google Scholar 

  58. Wu J, Luo Y, Chen Y et al (2022) Poly(ionic liquid)s as lubricant additives with insight into adsorption-lubrication relationship. Tribol Int 165:107278. https://doi.org/10.1016/j.triboint.2021.107278

    Article  CAS  Google Scholar 

  59. Kondo H (2008) Protic ionic liquids with ammonium salts as lubricants for magnetic thin film media. Tribol Lett 31:211–218. https://doi.org/10.1007/s11249-008-9355-9

    Article  CAS  Google Scholar 

  60. Huang G, Yu Q, Ma Z et al (2017) Probing the lubricating mechanism of oil-soluble ionic liquids additives. Tribol Int 107:152–162. https://doi.org/10.1016/j.triboint.2016.08.027

    Article  CAS  Google Scholar 

  61. Liu X, Zhou F, Liang Y, Liu W (2006) Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261:1174–1179. https://doi.org/10.1016/j.wear.2006.03.018

    Article  CAS  Google Scholar 

  62. Miyajima M, Matsumoto K, Kitamura K (2017) Characterization of Tribochemical Reactions on Steel Surfaces. 7

  63. Hsu SM, Zhang J, Yin Z (2002) The nature and origin of tribochemistry. Tribol Lett 13:131–139. https://doi.org/10.1023/A:1020112901674

    Article  CAS  Google Scholar 

  64. Rigney DA, Chen LH, Naylor MGS, Rosenfield AR (1984) Wear processes in sliding systems. Wear 100:195–219. https://doi.org/10.1016/0043-1648(84)90013-9

    Article  CAS  Google Scholar 

  65. Reddy AS, Bai BNP, Murthy KSS, Biswas SK (1994) Wear and seizure of binary Al-Si alloys. Wear 171:115–127. https://doi.org/10.1016/0043-1648(94)90354-9

    Article  CAS  Google Scholar 

  66. Crockett RM, Derendinger MP, Hug PL, Roos S (2004) Wear and electrical resistance on diesel lubricated surfaces undergoing reciprocating sliding. Tribol Lett 16:187–194. https://doi.org/10.1023/B:TRIL.0000009729.15103.5c

    Article  CAS  Google Scholar 

  67. Guo H, Lou C, Pang J et al (2022) Linear alkyl-benzenesulfonate-based protic ionic liquids: physicochemical properties and tribological performance as lubricant additives to a non-polar base oil. J Mol Liq 361:119535. https://doi.org/10.1016/j.molliq.2022.119535

    Article  CAS  Google Scholar 

  68. Stemmer P, Fischer A (2018) Pathways of dissipation of frictional energy under boundary lubricated sliding wear of martensitic materials. Lubricants 6:34. https://doi.org/10.3390/lubricants6020034

    Article  Google Scholar 

  69. Heinz K, Gahr Z (1987) Microstructure and wear of materials, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  70. Quinn TFJ (1983) NASA interdisciplinary collaboration in tribology, vol 118

  71. Quinn TFJ, Sullivan JL, Rowson DM (1984) Origins and development of oxidational wear at low ambient temperatures. Wear 94:175–191. https://doi.org/10.1016/0043-1648(84)90053-X

    Article  CAS  Google Scholar 

  72. Batchelor AW, Stachowiak GW, Cameron A (1986) The relationship between oxide films and the wear of steels. Wear 113:203–223. https://doi.org/10.1016/0043-1648(86)90121-3

    Article  CAS  Google Scholar 

  73. Basile LJ, Ferraro JR, Mitchell ML, Sullivan JC (1978) The raman scattering of actinide (VI) ions in carbonate media. Appl Spectrosc 32:535–537

    Article  CAS  Google Scholar 

  74. Mäntyranta A, Heino V, Isotahdon E et al (2019) Tribocorrosion behaviour of two low-alloy steel grades in simulated waste solution. Tribol Int 138:250–262. https://doi.org/10.1016/j.triboint.2019.05.032

    Article  CAS  Google Scholar 

  75. Hayyan M, Sameh SA, Hayyan A, AlNashef IM (2012) Utilizing of sodium nitrite as inhibitor for protection of carbon steel in salt solution. Int J Electrochem Sci 7:10

    Article  Google Scholar 

  76. Wachter A (1945) Sodium nitrite as corrosion inhibitor for water. Ind Eng Chem 37:749–751. https://doi.org/10.1021/ie50428a021

    Article  CAS  Google Scholar 

  77. de Castro VV, Mazzini Fontoura LA, Benfica JD et al (2016) Lubricated sliding wear of SAE 1045 and SAE 52100 steel against alumina in the presence of biodiesel, diesel and a 50:50 blend of those fuels. Wear 368–369:267–277. https://doi.org/10.1016/j.wear.2016.09.026

    Article  CAS  Google Scholar 

  78. **ng S, Yu S, Deng Y et al (2012) Effect of cerium on abrasive wear behaviour of hardfacing alloy. J Rare Earths 30:69–73. https://doi.org/10.1016/S1002-0721(10)60641-2

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the financial support of CAPES, Coordination for the Improvement of Higher Educational Personnel, Brazil (PROEX 23038.000341/2019-71); Victor Velho de Castro thanks CNPq—National Council for Scientific and Technological Development, Brazil. (Grant: 166262/2018-8) and FAPERGS (Grant 22/2551-0001071-7); Célia de Fraga Malfatti thanks CNPq—National Council for Scientific and Technological Development, Brazil (Grant: 307723/2018-6); Carlos Alexandre dos Santos thanks CNPq—National Council for Scientific and Technological Development, Brazil (Grant: 403303/2016-6).

Author information

Authors and Affiliations

Authors

Contributions

VVdC: conceptualization; data curation; formal analysis; investigation; methodology; writing, review & editing; LMdS: data curation; formal analysis; investigation, review & editing; LMA: investigation; writing, review & editing; RMS: data curation; formal analysis; investigation; supervision; validation; review & editing; SM: supervision; review & editing; KSS: investigation, supervision; review & editing; MBP: investigation, supervision; review & editing; CRdLL: review & editing; SE: supervision; review & editing; CAdS: supervision; data curation; review & editing; CdFM: conceptualization; data curation; formal analysis; investigation; methodology; project administration; supervision; validation; visualization; review & editing.

Corresponding author

Correspondence to Victor Velho de Castro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

The author transfers to the concerned publisher the non-exclusive publication rights and the warrants that his contribution is original and that he has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, V.V., dos Santos, L.M., Antonini, L.M. et al. A Tribological and Electrochemical Study of Protic Ionic Liquid and Bentonite Particles Used as Lubricating Additives in Water-Based Lubricants. J Bio Tribo Corros 9, 51 (2023). https://doi.org/10.1007/s40735-023-00770-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00770-9

Keywords

Navigation