Log in

A Novel Technique for Dressing Fixed Abrasive Lap** Pad with Abrasive Water Jet

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The dressing method and dressing quality of the fixed abrasive lap** pad significantly impact the processing efficiency and surface quality of the workpiece material. Aiming at the problems of poor dressing effect and high damage degree of the lap** pad in the existing fixed abrasive dressing technology, a new technology using abrasive water jet for dressing is proposed. The self-developed abrasive water jet system was used to conduct a dressing test on a fixed abrasive lap** pad with a copper content of 30%. The influence of jet pressure, nozzle target distance, abrasive concentration and injection angle on the dressing effect were discussed, and the influence mechanism was analyzed by discrete element simulation. The results show that the dressing effect of the abrasive water jet is good. The dressing quality first increases and then decreases with the increase of jet pressure, nozzle target distance and injection angle, and increases with the increase of abrasive concentration. The influence mechanism of each parameter is closely related to the residual height of the lap** pad surface after dressing. The higher the residual height, the rougher the lap** pad surface, and the better the dressing effect of the lap** pad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. Li, L. M., Li, M., & Zhu, Y. W. (2009). Fixed abrasive lap** and polishing present situation and prospect. Diamond & Abrasives Engineering 5(4):17–22. https://doi.org/10.13394/j.cnki.jgszz.2009.05.005

  2. Ling, S. Z., Mo, H. L., Wang, Z. X., & Zhu, Y. W. (2017). Effect of abrasive on processing characteristics of fixed diamond aggregations pad lap** quartz glass. Diamond & Abrasives Engineering. 37(5):13–14. https://doi.org/10.13394/j.cnki.jgszz.2017.5.0002

  3. Liang, H., Martin, J. M., & Mogne, T. L. (2002). Interfacial transfer between copper and polyurethane in CMP. Journal of Electronic Materials., 31(8), 872–878. https://doi.org/10.1007/s11664-002-0198-0

    Article  Google Scholar 

  4. Qiu, S. X. (2007). Study on conditioner for polishing pad in CMP. Dalian University of Technology. https://doi.org/10.7666/d.y1225585

    Article  Google Scholar 

  5. Zhao, W. H., Zhou, Z. H., & Lv, B. H. (2007). Study on polishing pad dressing in chemical mechanical polishing process. New Technology & New Process., 3, 24–27. https://doi.org/10.3969/j.issn.1003-5311.2007.03.006

    Article  Google Scholar 

  6. Seike, Y., Amari, M., Miyachi, K., & Doi, T. (2007). CMP pad cleaning and conditioning technology for the semiconductor manufacturing with super high-pressure micro jet (HPMJ). Journal of the Japan Society for Abrasive Technology. 51:134–1 37. https://xueshu.baidu.com/usercenter/paper/show?paperid=3e1e4a2ffda17082a67e9 e099727cfda&site=xueshu_se&hitarticle=1

  7. Seike, Y., Denardis, D., Sugiyama, M., Miyachi, K., Doi, T., & Philipossing, A. (2005). Development and analysis of a high-pressure micro Jet pad conditioning system for interlayer dielectric chemical mechanical planarization. Japanese Journal of Applied Physics., 44(3), 1225–1231. https://doi.org/10.1143/JJAP.44.1225

    Article  Google Scholar 

  8. Denardis, D., Seike, Y., Takaoka, M., Miyachi, K., & Philipossian, A. (2006). Investigation of high-pressure micro jet technology as an alternative to diamond disc conditioning in ILD CMP. Wear, 260(11), 1224–1231. https://doi.org/10.1016/j.wear.2005.08.002

    Article  Google Scholar 

  9. Kurokawa, S., Miyachi, K., Seike, Y., Doi, T., Nakayama, K., Seike, Y., Matsukawa, Y., & Umezaki, Y. (2008). CMP characteristics of silicon wafer with a micro-fiber pad, and pad conditioning with high pressure micro jet (HPMJ). The 5th International Symposium on Advanced Science and Technology of Silicon Materials Kona, Hawaii, USA. 62(5–8):645–654. https://xueshu.baidu.com/usercenter/paper/show?paperid=1c4c0e32e537cd50351a97469c63c984&site=xueshu_se&hitarticle=1

  10. Miyachi, K., Kurokawa, S., Doi, T., & Ohnishi, O. (2010). Unwoven fabric pads non-destructive conditioning by high pressure micro jet in CMP process. Journal of the Japan Society for Precision Engineering., 76(9), 1076–1081. https://doi.org/10.2493/jjspe.76.1076

    Article  Google Scholar 

  11. Miyachi, K., Seike, Y., Haba, S., Kurokawa, S., Doi, T. (2011). Impact of a High Pressure Micro Jet (HPMJ) on the conditioning and cleaning of unwoven fabric polyester pads in silicon polishing. International Conference on Planarization/CMP Technology. VDE VERLAG GmbH. 1–6. https://xueshu.baidu.com/usercenter/paper/show?paperid=303e5ab218828baa0931686ccce0f194&site=xueshu_se

  12. Kim, H., Park, B., & Sangick, L. (2004). Self-conditioning fixed abrasive pad in CMP. Journal of the electrochemical society., 151(12), 858–862. https://doi.org/10.1149/1.1813951

    Article  Google Scholar 

  13. Jae young Choi and Hae do Jeong. (2004). A study on polishing of molds using hydrophilic fixed abrasive pad. International journal of machine tools & manufacture., 44, 1163–1169. https://doi.org/10.1016/j.ijmachtools.2004.04.006

    Article  Google Scholar 

  14. Hoyoun, K., Hyoungjae, K., & Haedo, J. (2003). Self-conditioning of encapsulated abrasive pad in chemical mechanical polishing. Journal of materials processing technology., 142, 614–618. https://doi.org/10.1016/s0924-0136(03)00641-1

    Article  Google Scholar 

  15. Tang, X. X., Zhu, Y. W., Wang, C., Gu, Y. B., & Ju, Z. L. (2004). Realization of self-conditioning process of hydrophilic fixed abrasive pad. Nanotechnology and Precision Engineering. 12(01): 614–618. https://doi.org/10.13494/j.npe.20140037

  16. Chen, J. P., Zhu, Y. W., Peng, Y. N., Guo, J., & Ding, C. (2020). Silica-assisted fixed agglomerated diamond abrasive polishing. Journal of Manufacturing Processes., 59, 595–603. https://doi.org/10.1016/j.jmapro.2020.09.013

    Article  Google Scholar 

  17. Wang, J. B. (2015). Material removal mechanism and process research of lap** sapphire by fixed abrasive. Nan**g University of Aeronautics and Astronautics. https://xueshu.baidu.com/usercenter/paper/show?paperid=1bd51c9ff724c3e3354afad4a26d5b9d&site=xueshu_se&hitarticle=1

  18. Holland, K., Hurst, A., & Pinder, H. (2002) Improving cost of ownership and performance of CMP process and consumables. Micro -Santa Monica-. 20(4):26–32. https://xueshu.baidu.com/usercenter/paper/show?paperid=b0e245ba5fe40815fe3e28fa8b6f5577&site=xueshu_se&hitarticle=1

  19. Tsai, M. Y., & Yang, W. Z. (2012). Water-jet-assisted diamond disk dressing characteristics of CMP polishing pad. The International Journal of Advanced Manufacturing Technology., 62, 645–654. https://doi.org/10.1007/s00170-011-3838-9

    Article  Google Scholar 

  20. Tang, X. X., Zhu, Y. W., Fu, J., Wang, C., & Ju, Z. L. (2012). Influence of copper content on the machining performance of hydrophilic fixed abrasive pad. Diamond & Abrasives Engineering. 32(4):10–13. https://doi.org/10.13394/j.cnki.jgszz.2012.04.009

  21. Zhang, Z. Z., Yao, P., Zhang, Z. Y., Xue, D., Wang, C., & Zhu, H. (2017). A novel technique for dressing metal-bonded diamond grinding wheel with abrasive waterjet and touch truing. International Journal of Advanced Manufacturing., 93, 3063–3073. https://doi.org/10.1007/s00170-017-0738-7

    Article  Google Scholar 

  22. Miu, X. J. (2020). Study on cutting mechanisms and quality improvement methods of abrasive water jet. Jiangnan University. https://doi.org/10.27169/d.cnki.gwqgu.2020.000061

  23. Ren, J. L., Zhou, L. H., Han, L., Zhou, J. N., & Yan, M. (2017). Discrete Simulation of Vertical Screw Conveyor Based on Particle Scaling Theory. The Chinese Journal of Process Engineering. 17(05):936–943. https://doi.org/10.12034/j.issn.1009-606X.217109

  24. Feng, Y. T, & Owen, D. (2014). Discrete element modelling of large scale particle systems: i. exact scaling laws. Computational Particle Mechanics. 1(2):159–168. https://doi.org/10.1007/s40571-014-0010-y

  25. Li. Y. X., Li, F. X., Xu, X. M., Sheng, C. P., & Meng, K. P. (2019). Discrete element parameter calibration of wheat flour based on particle scaling. Transactions of the Chinese Society of Agricultural Engineering. 35(16):320–327. https://doi.org/10.11975/j.issn.1002-6819.2019.16.035

  26. Sakai, M., Takahashi, H., Pain, C., Latham, J., & **ang, J. (2012). Study on a large-scale discrete element model for fine particles in a fluidized bed. Advanced Powder Technology., 23(5), 673–681. https://doi.org/10.1016/j.apt.2011.08.006

    Article  Google Scholar 

  27. Weinhart, T., Labra, C., Luding, S., & Ooi, J. Y. (2016). Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technology., 293, 138–148. https://doi.org/10.1016/j.powtec.2015.11.052

    Article  Google Scholar 

  28. Thomas, R., & André, K. (2018). Scaling of the angle of repose test and its influence on the calibration of DEM parameters using upscaled particles. Powder Technology., 330, 58–66. https://doi.org/10.1016/j.powtec.2018.01.044

    Article  Google Scholar 

  29. Munjiza, A., Feng, Y. T., & Loughran, J. (2009). On upscaling of discrete element models: Similarity principles. Engineering Computations., 26(6), 599–609. https://doi.org/10.1108/02644400910975405

    Article  Google Scholar 

  30. William, S., Daniel, M., Carmine, S., Karl, S., & Peng, H. (2014). Comparison of discrete element method and traditional modeling methods for steady-state wheel-terrain interaction of small vehicles. Journal of Terramechanics., 56, 61–75. https://doi.org/10.1016/j.jterra.2014.08.004

    Article  Google Scholar 

  31. Meng, X. W. (2014). The simulation and experimental research of AJW cutting hard and brittle materials. Harbin University of Science and Technology. https://doi.org/10.27063/d.cnki.ghlgu.2014.000002

  32. Momber, A. W. & Kovacevic, R. (1998). Principles of abrasive water jet machining. London: Springer. 20–22. https://doi.org/10.1007/978-1-4471-1572-4

  33. Hashish, M. (1989). Pressure effects in abrasive-waterjet (AWJ) machining. Journal of Engineering Materials and Technology., 111(3), 221–228. https://doi.org/10.1115/1.3226458

    Article  MathSciNet  Google Scholar 

  34. Liu, D., Zhu, H. T., Huang, C. Z., Wang, J., & Yao, P. (2016). Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet-finite element method and experimental study. The International Journal of Advanced Manufacturing., 87(9–12), 2673–2682. https://doi.org/10.1007/s00170-016-8600-x

    Article  Google Scholar 

  35. Zhang, W. C., & Wu, M. P. (2017). Optimization of process parameters of abrasive water jet polishing 45 steel. Machine Design and Research. 33(6): 113–117. https://doi.org/10.13952/j.cnki.jofmdr.2017.0254

  36. Che, C. L. (2011). Study on the abrasive water jet polishing technology for curve surface of hard-brittle materials. Shangdong University. https://doi.org/10.7666/d.y2045564

    Article  Google Scholar 

  37. Wang, Z. K. (2016). Lap** and polishing mechanism of magnesium aluminate spinel doom cover by fixed abrasive. Nan**g University of Aeronautics and Astronautics

  38. Liu, Z. L. (2009). Tribological principle. Higher Education Press. 51–54. https://xueshu.baidu.com/usercenter/paper/show?paperid=a17e813e4850f1bfa91eed85aac1f734&site=xueshu_se

  39. Wang, Z. K., Zhu, Y. W., Li, X. L., Zhu, N. N. & Li, J. (2017) Average cutting depth and subsurface damage of spinel induced by lap** with fixed abrasive pad. Journal of The Chinese Ceramic Society. 45(03): 402–409. https://doi.org/10.14062/j.issn.0454-5648.2017.03.12

Download references

Acknowledgements

This study was supported by the national natural science foundation of China (U1804142), Project funded by China Postdoctoral Science Foundation (2020M672220), Science and technology plan projects of Henan province (212102210062), Postdoctoral Research Project of Henan Province (201903045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhankui Wang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, Y., Zhang, Z. et al. A Novel Technique for Dressing Fixed Abrasive Lap** Pad with Abrasive Water Jet. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1351–1373 (2023). https://doi.org/10.1007/s40684-022-00500-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00500-5

Keywords

Navigation