Log in

Metabolomic profiles of ovariectomized mice and their associations with body composition and frailty-related parameters in postmenopausal women

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Menopause, a dramatical estrogen-deficient condition, is considered the most significant milestone in women’s health.

Purpose

To investigate the metabolite changes attributed to estrogen deficiency using random forest (RF)-based machine learning (ML) modeling strategy in ovariectomized (OVX) mice as well as determine the clinical relevance of selected metabolites in older women.

Methods and results

Untargeted and targeted metabolomic analyses revealed that metabolites related to TCA cycle, sphingolipids, phospholipids, fatty acids, and amino acids, were significantly changed in the plasma and/or muscle of OVX mice. Subsequent ML classifiers based on RF algorithm selected alpha-ketoglutarate (AKG), arginine, carnosine, ceramide C24, phosphatidylcholine (PC) aa C36:6, and PC ae C42:3 in plasma as well as PC aa 34:1, PC aa C34:3, PC aa C36:5, PC aa C32:1, PC aa C36:2, and sphingosine in muscle as top featured metabolites that differentiate the OVX mice from the sham-operated group. When circulating levels of AKG, arginine, and carnosine, which showed the most significant changes in OVX mice blood, were measured in postmenopausal women, higher plasma AKG levels were associated with lower bone mass, weak grip strength, poor physical performance, and increased frailty risk.

Conclusions

Metabolomics- and ML-based methods identified the key metabolites of blood and muscle that were significantly changed after ovariectomy in mice, and the clinical implication of several metabolites was investigated by looking at their correlation with body composition and frailty-related parameters in postmenopausal women. These findings provide crucial context for understanding the diverse physiological alterations caused by estrogen deficiency in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Some or all datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Eyster KM (2016) The estrogen receptors: an overview from different perspectives. Methods Mol Biol 1366:1–10

    Article  PubMed  CAS  Google Scholar 

  2. Hamilton KJ, Hewitt SC, Arao Y, Korach KS (2017) Estrogen hormone biology. Curr Top Dev Biol 125:109–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lizcano F (2022) Roles of estrogens, estrogen-like compounds, and endocrine disruptors in adipocytes. Front Endocrinol (Lausanne) 13:921504

    Article  PubMed  Google Scholar 

  4. Bracht JR, Vieira-Potter VJ, De Souza SR, Öz OK, Palmer BF, Clegg DJ (2020) The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 1461:127–143

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Patel S, Homaei A, Raju AB, Meher BR (2018) Estrogen: the necessary evil for human health, and ways to tame it. Biomed Pharmacother 102:403–411

    Article  PubMed  CAS  Google Scholar 

  6. Nelson HD (2008) Menopause. Lancet 371:760–770

    Article  PubMed  Google Scholar 

  7. Santoro N, Roeca C, Peters BA, Neal-Perry G (2021) The menopause transition: signs, symptoms, and management options. J Clin Endocrinol Metab 106:1–15

    Article  PubMed  Google Scholar 

  8. Geraci A, Calvani R, Ferri E, Marzetti E, Arosio B, Cesari M (2021) Sarcopenia and menopause: the role of estradiol. Front Endocrinol (Lausanne) 12:682012

    Article  PubMed  Google Scholar 

  9. Ruan H, Hu J, Zhao J, Tao H, Chi J, Niu X et al (2020) Menopause and frailty: a sco** review. Menopause 27:1185–1195

    Article  PubMed  Google Scholar 

  10. Sophocleous A, Idris AI (2014) Rodent models of osteoporosis. BoneKEy Rep 3:614–614

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun B, Yin YZ, **ao J (2019) An in vivo estrogen deficiency mouse model for screening exogenous estrogen treatments of cardiovascular dysfunction after menopause. J Vis Exp. https://doi.org/10.3791/59536-v

    Article  PubMed  Google Scholar 

  12. Tao X, Yan M, Wang L, Zhou Y, Wang Z, **a T et al (2020) Effects of estrogen deprivation on memory and expression of related proteins in ovariectomized mice. Ann Transl Med 8:356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K et al (2018) Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model. Sci Rep 8:16456

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Souza VR, Mendes E, Casaro M, Antiorio A, Oliveira FA, Ferreira CM (2019) Description of ovariectomy protocol in mice. Methods Mol Biol 1916:303–309

    Article  PubMed  CAS  Google Scholar 

  15. Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradère JP, Le Gonidec S et al (2018) The exerkine apelin reverses age-associated sarcopenia. Nat Med 24:1360–1371

    Article  PubMed  CAS  Google Scholar 

  16. Lee SW, Yang J, Kim SY, Jeong HK, Lee J, Kim WJ et al (2015) MicroRNA-26a induced by hypoxia targets HDAC6 in myogenic differentiation of embryonic stem cells. Nucleic Acids Res 43:2057–2073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  PubMed  CAS  Google Scholar 

  18. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  19. Kim HS, Yoo HJ, Lee KM, Song HE, Kim SJ, Lee JO et al (2021) Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis. Respirology 26:255–263

    Article  PubMed  Google Scholar 

  20. Kim HK, Shin MS, Youn BS, Kang GM, Gil SY, Lee CH et al (2015) Regulation of energy balance by the hypothalamic lipoprotein lipase regulator Angptl3. Diabetes 64:1142–1153

    Article  PubMed  CAS  Google Scholar 

  21. Koh EH, Yoon JE, Ko MS, Leem J, Yun JY, Hong CH et al (2021) Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut 70:1954–1964

    Article  PubMed  CAS  Google Scholar 

  22. Lee SR, Heo JH, Jo SL, Kim G, Kim SJ, Yoo HJ et al (2021) Progesterone receptor membrane component 1 reduces cardiac steatosis and lipotoxicity via activation of fatty acid oxidation and mitochondrial respiration. Sci Rep 11:8781

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lee HY, Nam S, Kim MJ, Kim SJ, Back SH, Yoo HJ (2021) Butyrate prevents TGF-β1-induced alveolar myofibroblast differentiation and modulates energy metabolism. Metabolites 11:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ji M, Jo Y, Choi SJ, Kim SM, Kim KK, Oh B-C et al (2022) Plasma metabolomics and machine learning-driven novel diagnostic signature for non-alcoholic steatohepatitis. Biomedicines 10:1669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Oh J-H, Song S, Rhee H, Lee SH, Kim DY, Choe JC et al (2019) Normal reference plots for the bioelectrical impedance vector in healthy Korean adults. J Korean Med Sci 34:e198

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nga HT, Jang IY, Kim DA, Park SJ, Lee JY, Lee S et al (2021) Serum GDF15 level is independent of sarcopenia in older Asian adults. Gerontology 67:525–531

    Article  PubMed  CAS  Google Scholar 

  27. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C et al (2011) A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 40:423–429

    Article  PubMed  Google Scholar 

  28. Jung HW, Park JH, Kim DA, Jang IY, Park SJ, Lee JY et al (2021) Association between serum FGF21 level and sarcopenia in older adults. Bone 145:115877

    Article  PubMed  CAS  Google Scholar 

  29. Kim DH, Afilalo J, Shi SM, Popma JJ, Khabbaz KR, Laham RJ et al (2019) Evaluation of changes in functional status in the year after aortic valve replacement. JAMA Intern Med 179:383–391

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol Series A 56:M146–M157

    Article  CAS  Google Scholar 

  31. Jang IY, Lee S, Kim JH, Lee E, Lee JY, Park SJ et al (2020) Lack of association between circulating apelin level and frailty-related functional parameters in older adults: a cross-sectional study. BMC Geriatr 20:420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rockwood K, Mitnitski A (2007) Frailty in relation to the accumulation of deficits. J Gerontol Series A 62:722–727

    Article  Google Scholar 

  33. Lee H, Lee E, Jang I-Y (2020) Frailty and comprehensive geriatric assessment. J Korean Med Sci. https://doi.org/10.3346/jkms.2020.35.e16

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim SJ, Song HE, Lee HY, Yoo HJ (2021) Mass spectrometry-based metabolomics in translational research. Adv Exp Med Biol 1310:509–531

    Article  PubMed  CAS  Google Scholar 

  35. Schooneman MG, Vaz FM, Houten SM, Soeters MR (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62:1–8

    Article  PubMed  CAS  Google Scholar 

  36. Biolo G, Cederholm T, Muscaritoli M (2014) Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr 33:737–748

    Article  PubMed  Google Scholar 

  37. Karakelides H, Nair KS (2005) Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol 68:123–148

    Article  PubMed  CAS  Google Scholar 

  38. Wilkinson DJ, Rodriguez-Blanco G, Dunn WB, Phillips BE, Williams JP, Greenhaff PL et al (2020) Untargeted metabolomics for uncovering biological markers of human skeletal muscle ageing. Aging (Albany NY) 12:12517–12533

    Article  PubMed  CAS  Google Scholar 

  39. Uchitomi R, Hatazawa Y, Senoo N, Yoshioka K, Fujita M, Shimizu T et al (2019) Metabolomic analysis of skeletal muscle in aged mice. Sci Rep 9:10425

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Moaddel R, Fabbri E, Khadeer MA, Carlson OD, Gonzalez-Freire M, Zhang P et al (2016) Plasma biomarkers of poor muscle quality in older men and women from the baltimore longitudinal study of aging. J Gerontol A Biol Sci Med Sci 71:1266–1272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Peterson CM, Johannsen DL, Ravussin E (2012) Skeletal muscle mitochondria and aging: a review. J Aging Res 2012:194821

    Article  PubMed  PubMed Central  Google Scholar 

  42. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102:5618–5623

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Su Y, Wang T, Wu N, Li D, Fan X, Xu Z et al (2019) Alpha-ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK. Aging (Albany NY) 11:4183–4197

    Article  PubMed  CAS  Google Scholar 

  44. Asadi Shahmirzadi A, Edgar D, Liao CY, Hsu YM, Lucanic M, Asadi Shahmirzadi A et al (2020) Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab 32:447-456.e446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wu N, Yang M, Gaur U, Xu H, Yao Y, Li D (2016) Alpha-ketoglutarate: physiological functions and applications. Biomol Ther (Seoul) 24:1–8

    Article  PubMed  CAS  Google Scholar 

  46. Cai X, Yuan Y, Liao Z, **ng K, Zhu C, Xu Y et al (2018) α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. Faseb j 32:488–499

    Article  PubMed  CAS  Google Scholar 

  47. Tomaszewska E, Świątkiewicz S, Arczewska-Włosek A, Wojtysiak D, Dobrowolski P, Domaradzki P et al (2020) Alpha-ketoglutarate: an effective feed supplement in improving bone metabolism and muscle quality of laying hens: a preliminary study. Animals (Basel) 10:2420

    Article  PubMed  Google Scholar 

  48. Sutham W, Sripetchwandee J, Minta W, Mantor D, Pattanakuhar S, Palee S et al (2018) Ovariectomy and obesity have equal impact in causing mitochondrial dysfunction and impaired skeletal muscle contraction in rats. Menopause 25:1448–1458

    Article  PubMed  Google Scholar 

  49. McCoin CS, Knotts TA, Adams SH (2015) Acylcarnitines–old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol 11:617–625

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cree MG, Newcomer BR, Katsanos CS, Sheffield-Moore M, Chinkes D, Aarsland A et al (2004) Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab 89:3864–3871

    Article  PubMed  CAS  Google Scholar 

  51. Crane JD, Devries MC, Safdar A, Hamadeh MJ, Tarnopolsky MA (2010) The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J Gerontol A Biol Sci Med Sci 65:119–128

    Article  PubMed  Google Scholar 

  52. Barbul A (2008) Proline precursors to sustain Mammalian collagen synthesis. J Nutr 138:2021s–2024s

    Article  PubMed  CAS  Google Scholar 

  53. Raine-Fenning NJ, Brincat MP, Muscat-Baron Y (2003) Skin aging and menopause: implications for treatment. Am J Clin Dermatol 4:371–378

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Research Foundation of Korea (NRF) funded by the South Korean government (MSIT) [grant number: 2021R1C1C2006842] and from the Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea [grant number: 2022IP0036].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Ryu, H. J. Yoo or B.-J. Kim.

Ethics declarations

Conflict of interest

The authors declare no present or potential conflicts of interest.

Ethical approval

The present study received the approval of the AMC Institutional Review Board (no. 2020–0259).

Informed consent

Informed consent was obtained from each study participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 357 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Jo, Y., Park, S.J. et al. Metabolomic profiles of ovariectomized mice and their associations with body composition and frailty-related parameters in postmenopausal women. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-024-02338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-024-02338-x

Keywords

Navigation