Log in

Morphological Study of Directionally Freeze-Cast Nickel Foams

  • Published:
Metallurgical and Materials Transactions E

Abstract

Nickel foams, consisting of 51 to 62 pct aligned, elongated pores surrounded by a network of Ni walls, were fabricated by reduction and sintering of directionally cast suspensions of nanometric NiO powders in water. Use of dispersant in the slurry considerably affected the foam morphology and microstructure at both the micro- and macro-scale, most likely by modifying ice solidification into dendrites (creating the aligned, elongated macro-pores) and NiO powder accumulation in the inter-dendritic space (creating the Ni walls with micro-pores). The mean width of the Ni walls, in foams solidified with and without dispersant, was 21 ± 5 and 75 ± 13 µm, respectively. Additionally, the foams with the dispersant showed less dense walls and rougher surfaces than those without the dispersant. Moreover, the fraction of closed pores present in the foam walls with the dispersant was higher than that of the samples without dispersant. We finally verified the potential energy application of the Ni foam produced in this study by carrying out a preliminary single-cell performance test with the Ni foam sample as the gas diffusion layer on the anode side of a polymer electrolyte membrane fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.C. Shin and M. Liu: Adv. Funct. Mater., 2005, vol. 15, pp. 582–86.

    Article  Google Scholar 

  2. L. Giani, G. Groppi, and E. Tronconi: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 4993–5002.

    Article  Google Scholar 

  3. K.C. Leong and L.W. **: Int. J. Heat Fluid Flow, 2006, vol. 27, pp. 144–53.

    Article  Google Scholar 

  4. J. Adler: Int. J. Appl. Ceram. Technol., 2005, vol. 2, pp. 429–39.

    Article  Google Scholar 

  5. L. Lefebvre, J. Banhart, and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 28, pp. 769–74.

    Google Scholar 

  6. P. Colombo, D.C. Dunand, and V. Kumar: J. Mater. Res., 2013, vol. 28, pp. 2187–90.

    Article  Google Scholar 

  7. V. Ganesh, V. Lakshminarayanan, and S. Pitchumani: Electrochem. Solid State Lett., 2005, vol. 8, p. A308–12.

    Article  Google Scholar 

  8. H. Park, C. Ahn, H. Jo, M. Choi, D.S. Kim, D.K. Kim, S. Jeon, and H. Choe: Mater. Lett., 2014, vol. 129, pp. 174–77.

    Article  Google Scholar 

  9. M. Gauthier, L.-P. Lefebvre, Y. Thomas, and M.N. Bureau: Mater. Manuf. Process., 2004, vol. 19, pp. 793–811.

    Article  Google Scholar 

  10. V. Paserin, S. Marcuson, J. Shu, and D.S. Wilkinson: Adv. Eng. Mater., 2004, vol. 6, pp. 454–59.

    Article  Google Scholar 

  11. Y. Boonyongmaneerat and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 379–83.

    Article  Google Scholar 

  12. S. Deville: Materials, 2010, vol. 3, pp. 1913–27.

    Article  Google Scholar 

  13. E. Munch, J. Franco, S. Deville, P. Hunger, E. Saiz, and A.P. Tomsia: JOM, 2008, vol. 60, pp. 54–58.

    Article  Google Scholar 

  14. J.L. Fife, J.C. Li, D.C. Dunand, and P.W. Voorhees: J. Mater. Res., 2009, vol. 24, pp. 117–24.

    Article  Google Scholar 

  15. A.I.C. Ramos and D.C. Dunand: Metals, 2012, vol. 2, pp. 265–73.

    Article  Google Scholar 

  16. R. Sepulveda, A.A. Plunk, and D.C. Dunand: Mater. Lett., 2015, vol. 142, pp. 56–59.

    Article  Google Scholar 

  17. J. Jiang, G. Oberdorster, and P. Biswas: J. Nanopart. Res., 2009, vol. 11, pp. 77–89.

    Article  Google Scholar 

  18. M.J. Rosen and J.T. Kunjappu: Surfactants and Interfacial Phenomena, 4th ed., Wiley, New Jersey, US, 2012.

    Book  Google Scholar 

  19. B. Jankovic, B. Adnadevic, and S. Mentus: Chem. Eng. Sci., 2008, vol. 63, pp. 567–75.

    Article  Google Scholar 

  20. G. Parravano: J. Am. Chem. Soc., 1952, vol. 74, pp. 1194–98.

    Article  Google Scholar 

  21. J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, J.Y. Kim, and M. Perez: J. Am. Chem. Soc., 2002, vol. 124, pp. 346–54.

    Article  Google Scholar 

  22. J.T. Richardson, R. Scates, and M.V. Twigg: Appl. Catal. A, 2003, vol. 246, pp. 137–50.

    Article  Google Scholar 

  23. T.A. Utigard, M. Wu, G. Plascencia, and T. Marin: Chem. Eng. Sci., 2005, vol. 60, pp. 2061–68.

    Article  Google Scholar 

  24. Q. Jeangros, T.W. Hansen, J.B. Wagner, C.D. Damsgaard, R.E. Dunin-Borkowski, C. Hebert, J. Vanherle, and A. Hessler-Wyser: J. Mater. Sci., 2013, vol. 48, pp. 2893–2907.

    Article  Google Scholar 

  25. S. Deville, E. Saiz, and A.P. Tomsia: Biomaterials, 2006, vol. 27, pp. 5480–89.

    Article  Google Scholar 

  26. K. Nagashima and Y. Furukawa: J. Cryst. Growth, 1997, vol. 171, pp. 577–85.

    Article  Google Scholar 

  27. G.W. Young, S.H. Davis, and K. Brattkus: J. Cryst. Growth, 1987, vol. 83, pp. 560–71.

    Article  Google Scholar 

  28. S. Deville: Adv. Eng. Mater., 2008, vol. 10, pp. 155–69.

    Article  Google Scholar 

  29. S. Deville, E. Saiz, and A.P. Tomsia: Acta Mater., 2007, vol. 53, pp. 1965–74.

    Article  Google Scholar 

  30. W.L. Li, K. Lu, and J.Y. Walz: Int. Mater. Rev., 2012, vol. 57, pp. 37–60.

    Article  Google Scholar 

  31. U.G.K. Wegst, M. Schecter, A.E. Donius, and P.M. Hunger: Philos. Trans. R. Soc. London Ser. A, 2009, vol. 368, pp. 2099–21.

    Article  Google Scholar 

  32. D.H. Napper: Polymeric Stabilization of Colloidal Dispersions, vol. 18, Academic Press, London, 1983.

    Google Scholar 

  33. S. Padilla, R. Garcia-Carrodeguas, and M. Vallet-Regi: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 2223–32.

    Article  Google Scholar 

  34. S. Sanchez-Salcedo, J. Werner, and M. Vallet-Regi: Acta Biomater., 2008, vol. 4, pp. 913–22.

    Article  Google Scholar 

  35. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Article  Google Scholar 

  36. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th ed., Elsevier Butterworth-Heinemann, Alabama, US, 2013.

    Google Scholar 

  37. H. Choi, O.-H. Kim, M. Kim, H. Choe, Y.-H. Cho, Y.-H. Cho, and Y.-E. Sung: ACS Appl. Mater. Int., 2014, vol. 6, pp. 7665–71.

    Article  Google Scholar 

  38. K.P. Dharmasena and H.N.G. Wadley: J. Mater. Res., 2002, vol. 17, pp. 625–631.

    Article  Google Scholar 

  39. R.W. Revie and H.H. Uhlig: Uhlig’s Corrosion Handbook, 3rd ed., Wiley, New Jersey, US, 2011.

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by the Priority (2012-0006680) and Pioneer (2011-0001684) Research Centers Programs through NRF. HC also acknowledges supports from the International Research and Development Program (NRF-2013K1A3A1A39074064) and the Basic Science Research Program (2014R1A2A1A11052513). DCD also acknowledges support from the Institute for Sustainability and Energy at Northwestern University (ISEN). YS acknowledges the Institute for Basic Science (IBS) in Korea by the Project Code (IBS-R006-G1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Dunand.

Additional information

Manuscript submitted August 17, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, H., Kim, M.J., Choi, H. et al. Morphological Study of Directionally Freeze-Cast Nickel Foams. Metallurgical and Materials Transactions E 3, 46–54 (2016). https://doi.org/10.1007/s40553-016-0068-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0068-y

Keywords

Navigation