Log in

Aspirin Desensitization in NERD in the Era of Biologics: First or Last Resource?

  • Precision Medicine and Allergy Treatments (J Maspero, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of the Review

The classic treatment of non-steroidal anti-inflammatory drug (NSAID) exacerbated respiratory disease (NERD) includes aspirin desensitization (AD). Introduction of biologics in the treatment of asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) has raised the question: which of the two options may be the most suitable for NERD?

Recent Findings

NERD is a highly eosinophilic disease. Monoclonal antibodies targeting IL-5 or the IL-5 receptor, involved in eosinophil recruitment, have been shown to be effective in asthma and CRSwNP. However, no difference in clinical efficacy was observed between NERD and aspirin-tolerant patients. Dupilumab, an IL-4 alpha receptor antagonist, demonstrated greater efficacy in NERD than in aspirin-tolerant patients for some clinical symptoms in a sub-analysis. Patients with NERD respond very rapidly to omalizumab with improvement in asthma and CRSwNP symptoms associated with reductions in prostaglandin D2 and cysteinyl leukotrienes release. Furthermore, omalizumab and dupilumab partially or totally restored tolerance to aspirin in NERD patients.

Summary

The decision to treat a NERD patient with AD or a biologic depends on many variables, such as differences between countries in the use of AD treatment in specialized units, limitations in accessing very expensive treatment in low-income countries and in countries where insurance systems do not cover or partially cover the cost of treatment. Patients who live in countries with public health systems that fully fund biologic treatments are more likely to benefit from biologic treatment. The limited data available so far suggest that, among current biologics, dupilumab ranks best for the treatment of CRSwNP associated with NERD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

Arachidonic acid

ACT:

Asthma control test

AD:

Aspirin desensitization

CS:

Corticosteroid

CRSwNP:

Chronic rhinosinusitis, with nasal polyps

CT:

Computed tomography

CySLT:

Cysteinyl leukotrienes

FcεRI:

High-affinity receptor Fc-epsilon-RI

FeNO:

Fractional exhaled nitric oxide

FEV1:

Forced expiratory volume in the first second

GETE:

Global evaluation of treatment effectiveness

IgE:

Immunoglobulin E

IL:

Interleukin

LTE4:

Leukotriene E4

NERD:

NSAID-exacerbated respiratory disease

NP:

Nasal polyp

NPS:

Nasal polyp score

NSAIDs:

Non-steroid anti-inflammatory drugs

PGE2:

Prostaglandin E2

PGD:

Prostaglandin D2

SNOT-22:

Sinonasal outcome test 22 score

TSLP:

Thymic stromal lymphopoietin

T2:

Type 2 immune response

TSLP:

Thymic stromal lymphopoietin

UPSIT:

University of Pennsylvania Smell Identification Test score

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stevenson DD, Szczeklik A. Clinical and pathologic perspectives on aspirin sensitivity and asthma. J Allergy Clin Immunol. 2006;118:773–86.

    Article  CAS  PubMed  Google Scholar 

  2. Cahill KN, Boyce JA. Aspirin-exacerbated respiratory disease: mediators and mechanisms of a clinical disease. J Allergy Clin Immunol. 2017;139:764–6.

    Article  CAS  PubMed  Google Scholar 

  3. Palikhe NS, Kim SH, Park HS. What do we know about the genetics of aspirin intolerance? J Clin Pharm Ther. 2008;33:465–72.

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C. Prostaglandin, leukotrienes, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol. 2005;115:1189–96.

    Article  CAS  PubMed  Google Scholar 

  5. Roca-Ferrer J, Garcia-Garcia FJ, Pereda J, Perez-Gonzalez M, Pujols L, Alobid I, et al. Reduced expression of COXs and production of prostaglandin E(2) in patients with nasal polyps with or without aspirin-intolerant asthma. J Allergy Clin Immunol. 2011;128:66–72.

    Article  CAS  PubMed  Google Scholar 

  6. Corrigan CJ, Napoli RL, Meng Q, Fang C, Wu H, Tochiki K, et al. Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. J Allergy Clin Immunol. 2012;129:1636–40.

    Article  CAS  PubMed  Google Scholar 

  7. Machado-Carvalho L, Torres R, Perez-Gonzalez M, Alobid I, Mullol J, Pujols L, et al. Altered expression and signalling of EP2 receptor in nasal polyps of AERD patients: role in inflammation and remodelling. Rhinology. 2016;54:254–65.

    Article  CAS  PubMed  Google Scholar 

  8. Machado-Carvalho L, Martín M, Torres R, Gabasa M, Alobid I, Mullol J, et al. Low E-prostanoid 2 receptor levels and deficient induction of the IL-1β/IL-1 type I receptor/COX-2 pathway: vicious circle in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137:99–107.

    Article  CAS  PubMed  Google Scholar 

  9. Sladek K, Dworski R, Soja J, Sheller JR, Nizankowska E, Oates JA, et al. Eicosanoids in bronchioalveolar lavage fluid of aspirin-intolerant patients with asthma after aspirin challenge. Am J Respir Crit Care Med. 1994;149:940–6.

    Article  CAS  PubMed  Google Scholar 

  10. Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, Arm JP, et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis. 1991;143:1025–9.

    Article  CAS  PubMed  Google Scholar 

  11. Picado C, Ramis I, Rosellò J, Prat J, Bulbena O, Plaza V, et al. Release of peptide leukotriene into nasal secretions after local instillation of aspirin in aspirin-sensitive asthmatic patients. Am Rev Respir Dis. 1992;145:65–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med. 2002;347:1493–9.

    Article  CAS  PubMed  Google Scholar 

  13. Steinke JW, Liu L, Huyett P, Negri J, Payne SC, Borish L. Prominent role of IFN-γ in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2013;132:856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steinke JW, Payne SC, Borish L. Eosinophils and mast cells in aspirin-exacerbated respiratory disease. Immunol Allergy Clin North Am. 2016;36:719–34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Machado-Carvalho L, Roca-Ferrer J, Picado C. IL-4/IFN-γ inflammatory cytokine profile induces a deficient regulation of the IL-1β/IL-1RI/EP2/COX-2 pathway in nasal mucosa. Respir Med. 2019;150:136–40.

    Article  PubMed  Google Scholar 

  16. Mellor EA, Austen KF, Boyce JA. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells though an interleukin 4-regulated pathway that it is inhibited by leukotriene receptor antagonists. J Exp Med. 2002;195:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchheit KM, Cahill KN, Katz HR, Murphy KC, Feng C, Lee-Sarwar K, et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137:1566–76.

    Article  CAS  PubMed  Google Scholar 

  18. Ogasawara N, Klingler AI, Tan BK, Poposki JA, Hulse KE, Stevens WW, et al. Epithelial activators of type 2 inflammation: elevation of thymic stromal lymphopoietin, but not IL-25 or IL-33, in chronic rhinosinusitis with nasal polyps in Chicago. Illinois Allergy. 2018;73:2251–4.

    Article  PubMed  Google Scholar 

  19. Cahill KN, Bensko JC, Boyce JA, Laidlaw T. Prostaglandin D(2): a dominant mediator of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2015;135:245–52.

    Article  CAS  PubMed  Google Scholar 

  20. Laidlaw TM, Kidder MS, Bhattacharyya N, **ng W, Shen S, Milde GL, et al. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood. 2012;119:3790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plaza V, Prat J, Rosellò J, Ballester E, Ramis I, Mullol J, et al. In vitro release of arachidonic acid metabolites, glutathione peroxidase, and oxygen-free radicals from platelets of asthmatic patients with and without aspirin intolerance. Thorax. 1995;50:490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. AIANE Investigators, European Network on Aspirin-Induced Asthma. Eur Resp J. 2000;16:432–6. Description of the natural history of NERD with more than 500 patients enrolled by various European centres.

  23. Berges-Gimeno MP, Simon RA, Stevenson DD. The natural history and clinical characteristics of aspirin exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2002;89:472–8.

    Article  Google Scholar 

  24. Mullol J, Picado C. Rhinosinusitis and nasal polyps in aspirin-exacerbated respiratory disease. Immunol Allergy Clin North Am. 2013;33:163–76.

    Article  PubMed  Google Scholar 

  25. Plaza V, Serrano J, Picado C, Sanchis J, High risk asthma research group. Frequency and clinical characteristics of rapid-onset fatal and near-fatal asthma. Eur Respir J. 2002;19:846–52.

    Article  CAS  PubMed  Google Scholar 

  26. Picado C, Castillo JA, Montserrat JM, Agusti-Vidal A. Aspirin-intolerance as a precipitating factor of life-threatening attacks of asthma requiring mechanical ventilation. Eur Respir J. 1989;2:127–9.

    CAS  PubMed  Google Scholar 

  27. Nizankovska-Mogilmicka E, Bochenek G, Mastalerz L, Swierczynska M, Picado C, Scadding G, et al. EAACI/GA2LEN guideline: aspirin provocation tests for diagnosis of aspirin hypersensitivity. Allergy. 2007;62:1111–8.

    Article  CAS  Google Scholar 

  28. • Chu DK, Lee DJ, Lee KM, Schünemann HJ, Szczeklik W, Lee JM. Benefits and harms of aspirin desensitization for aspirin-exacerbated respiratory disease: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2019;9:1409–19. Recent met-analysis reviewing the role of aspirin desensitization in the treatment of NERD.

  29. • Berges-Gimeno MP, Simon RA, Stevenson DD. Long-term treatment with aspirin desensitization in asthmatic patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2003;11:180–6. Study that reports the evolution of more than 170 NERD over a prolonged period of time.

  30. Sweis AM, Locke TB, Ig-Izevbekhai KI, Lin TC, Gleeson PK, Civantos AM, et al. Major complications of aspirin desensitization and maintenance therapy in aspirin-exacerbated respiratory disease. Int Forum Allergy Rhinol. 2021;11:115–9.

    Article  PubMed  Google Scholar 

  31. Lee RU, Stevenson DD. Aspirin-exacerbated respiratory disease: evaluation and management. Allergy Asthma Immunol Res. 2011;3:3–10.

    Article  CAS  PubMed  Google Scholar 

  32. Modena B, White AA, Woessner KM. Aspirin and nonsteroidal antiinflammatory drugs hypersensitivity and management. Immunol Allergy Clin North Am. 2017;37:727–727.

    Article  PubMed  Google Scholar 

  33. • Bobolea I, Del Pozo V, Sanz V, Cabañas R, Fiandor A, Alfonso-Carrillo C, et al. Aspirin in desensitization in aspirin-exacerbated respiratory disease: new insights into the molecular mechanisms. Respir Med. 2018;143:39–41. This study reports an unexpected increase of TSLP release with aspirin desensitization.

  34. •• Cahill KN, Cui J, Kothari P, Murphy K, Raby BA, Singer J, et al. Unique effect of aspirin therapy on biomarkers in aspirin-exacerbated respiratory disease. A Prospective Trial. Am J Respir Crit Care Med. 2019;200:704–11. This study shows that surprisingly and paradoxically aspirin desensitization causes increase in Th2 inflammation in the upper airways despite the significantly clinical improvement.

  35. McGregor MC, Krings JG, Nair P, Castro M. Role of biologics in asthma. Am J Respir Crit Care Med. 2019;199:433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howarth P, Chupp G, Nelsen LM, Bradford ES, Bratton DJ, Smith SG, et al. Severe eosinophilic asthma with nasal polyposis: a phenotype for improved sinonasal and asthma outcomes with mepolizumab therapy. J Allergy Clin Immunol. 2020;145:1713–5.

    Article  CAS  PubMed  Google Scholar 

  37. Agache I, Song Y, Rocha C, Beltran J, Posso M, Steiner C, et al. Efficacy and safety of treatment with dupilumab for severe asthma: a systematic review of the EAACI guidelines-recommendations on the use of biologicals in severe asthma. Allergy. 2020;75:1058–68.

    Article  PubMed  Google Scholar 

  38. Okayama Y, Matsumoto H, Odajima H, Takahagi S, Hide M, Okubo K. Roles of omalizumab in various allergic diseases. Allergol Int. 2020;69:167–77.

    Article  CAS  PubMed  Google Scholar 

  39. Tonacci A, Nettis E, Asero R, Rossi O, Tontini C, Gangemi S. Omalizumab retreatment in patients with chronic spontaneous urticaria: a systematic review of published evidence. Eur Ann Allergy Clin Immunol. 2020;52:100–3.

    Article  CAS  PubMed  Google Scholar 

  40. Bousquet J, Cabrera P, Berkman N, Buhl R, Holgate S, Wenzel S, et al. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy. 2005;60:302–8.

    Article  CAS  PubMed  Google Scholar 

  41. Alhossan A, Lee CS, MacDonald K, Abraham I. “Real-life” effectiveness studies of omalizumab in adult patients with severe allergic asthma: meta-analysis. J Allergy Clin Immunol Pract. 2017;5:1362–70.

    Article  PubMed  Google Scholar 

  42. Bachert C, Zhang N, Cavaliere C, Wei** W, Gevaert E, Krysko O. Biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145:725–39.

    Article  CAS  PubMed  Google Scholar 

  43. Bachert C, Sousa AR, Lund VJ, Scadding GK, Gevaert P, Nasser S, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: a randomised trial. J Allergy Clin Immunol. 2017;140:1024–31.

    Article  CAS  PubMed  Google Scholar 

  44. Han JK, Bachert C, Fokkens W, Desrosiers M, Wagenmann M, Lee SE, SYNAPSE study investigators, et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021;9:1141–53.

    Article  CAS  PubMed  Google Scholar 

  45. Bachert C, Han JK, Desrosiers MY, Gevaert P, Heffler E, Hopkins C, et al. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2021:S0091-6749(21)01459-7. https://doi.org/10.1016/j.jaci.2021.08.030.

  46. Gevaert P, Lang-Loidolt D, Stammberger H, Van Zele T, Holtappels G, Tavernier J, et al. Nasal interleukin-5 levels determine the response to anti-interleukin-5 treatment in nasal polyp patients. J Allergy Clin Immunol. 2006;118:1133–41.

    Article  CAS  PubMed  Google Scholar 

  47. Bachert C, Han JK, Desrosiers M, Hellings PW, Amin N, Lee SE, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394:1638–50.

    Article  CAS  PubMed  Google Scholar 

  48. Gevaert P, Omachi TA, Corren J, Mullol J, Han J, Lee SE, et al. Efficacy andsafety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020;146:595–605.

    Article  CAS  PubMed  Google Scholar 

  49. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma T, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(SupplS29):1–464.

    PubMed  Google Scholar 

  50. Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol. 2021;11:213–739.

    Article  PubMed  Google Scholar 

  51. Fokkens WJ, Lund V, Luong AU, Orlandi RR. A comparison of international guidelines for rhinosinusitis. J Allergy Clin Immunol Pract. 2022;24:2213–2198.

    Google Scholar 

  52. Tuttle KL, Buchheit KM, Laidlaw TM, Cahill KN. A retrospective analysis of mepolizumab in subjects with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2018;6:1045–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Eid RC, Wudneh E, Zahid S, Cahill K, Jerschow E. Poor control of asthma symptoms with interleukin-5 inhibitors in four patients with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2020;124:102–4.

    Article  CAS  PubMed  Google Scholar 

  54. Bachert C, Sousa AR, Han JK, Schlosser RJ, Sowerby LJ, Hopkins C, et al. Mepolizumab for chronic rhinosinusitis with nasal polyps: treatment efficacy by comorbidity and blood eosinophil count. J Allergy Clin Immunol. 2022. https://doi.org/10.1016/j.jaci.2021.10.040 (S0091-6749(22)00001-X).

    Article  PubMed  Google Scholar 

  55. Caruso C, Colantuono S, Pugliese D, Di Mario C, Tolusso B, Gremese E, et al. Severe eosinophilic asthma and aspirin-exacerbated respiratory disease associated to eosinophilic gastroenteritis treated with mepolizumab: a case report. Allergy Asthma Clin Immunol. 2020;22:16–27.

    Google Scholar 

  56. Mahdavinia M, Batra PS, Codispoti C. Mepolizumab utility in successful aspirin desensitization in aspirin-exacerbated respiratory disease in a refractory case. Ann Allergy Asthma Immunol. 2019;123:311–2.

    Article  CAS  PubMed  Google Scholar 

  57. Martin H, Barrett NA, Laidlaw T. Mepolizumab does not prevent all aspirin-induced reactions in patients with aspirin-exacerbated respiratory disease: a case series. J Allergy Clin Immunol Pract. 2021;9:1384–5.

    Article  PubMed  Google Scholar 

  58. Laidlaw TM, Mullol J, Fan C, Zhang D, Amin N, Khan A, Chao J, Mannent LP. Dupilumab improves nasal polyp burden and asthma control in patients with CRSwNP and AERD. J Allergy Clin Immunol Pract. 2019;7:2462–5.

    Article  PubMed  Google Scholar 

  59. Mullol J, Laidlaw TM, Bachert C, Mannent LP, Canonica GW, Han JK, et al. Efficacy and safety of dupilumab in patients with uncontrolled severe CRSwNP and a clinical diagnosis of NSAID-ERD: results from two randomized placebo-controlled phase 3 trials. Allergy. 2021. https://doi.org/10.1111/all.15067.

    Article  PubMed  Google Scholar 

  60. Mustafa SS, Vadamalai K. Dupilumab increases aspirin tolerance in aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2021;126:738–9.

    Article  CAS  PubMed  Google Scholar 

  61. Jean T, Eng V, Sheikh J, Kaplan MS, Goldberg B, Jau Yang S, et al. Effect of omalizumab on outcomes in patients with aspirin-exacerbated respiratory disease. Allergy Asthma Proc. 2019;40:316–20.

    Article  CAS  PubMed  Google Scholar 

  62. Forster-Ruhrmann U, Stergioudi D, Pierchalla G, Fluhr JW, Bergmann KC, Olze H. Omalizumab in patients with NSAIDs-exacerbated respiratory disease. Rhinology. 2020;58:226–32.

    CAS  PubMed  Google Scholar 

  63. Cameli P, Perruzza M, Salvini M, Fui A, Cekorja B, Refini RM, et al. Omalizumab treatment in Samter’s triad: case series and review of the literature. Eur Rev Med Pharmacol Sci. 2019;23:8124–9.

    CAS  PubMed  Google Scholar 

  64. Hayashi H, Mitsui C, Nakatani E, Fukutomi Y, Kajiwara K, Watai K, et al. Omalizumab reduces cysteinyl leukotriene and 9α,11β-prostaglandin F2 overproduction in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137:1585–7.

    Article  CAS  PubMed  Google Scholar 

  65. Lang DM, Aronica MA, Maierson ES, Wang XF, Vasas DC, Hazen SL. Omalizumab can inhibit respiratory reaction during aspirin desensitization. Ann Allergy Asthma Immunol. 2018;121:98–104.

    Article  CAS  PubMed  Google Scholar 

  66. Guillen D, Bobolea I, Calderon O, Fiandor A, Cabañas R, Heredia R, et al. Aspirin desensitization in a patient with aspirin exacerbated urticaria and respiratory disease, achieved after treatment with omalizumab. J Investig Allergol Clin Immunol. 2015;25:133–5.

    CAS  PubMed  Google Scholar 

  67. Hayashi H, Fukutomi Y, Mitsui C, Kajiwara K, Watai K, Kamide Y, et al. Omalizumab for aspirin hypersensitivity and leukotriene overproduction in aspirin-exacerbated respiratory disease. A randomized controlled trial. Am J Respir Crit Care Med. 2020;201:1488–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Laidlaw TM, Chu DK, Stevens WW, White AA. Controversies in allergy: aspirin desensitization or biologics for aspirin-exacerbated respiratory disease-how to choose? J Allergy Clin Immunol Pract. 2022:S2213-2198(22)00002-2. https://doi.org/10.1016/j.jaip.2021.12.030.

  69. Wangberg H, Spierling Bagsic SR, Osuna L, White AA. Appraisal of the real-world effectiveness of biologic therapies in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2022;10:478–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Picado MD, PhD, FERS.

Ethics declarations

Conflict of Interest

Related to this article, César Picado declares to have received honoraria from Novartis as a member of advisory boards. He also received financial support from Teva, GSK, and AstraZeneca for attending scientific symposia and other educational programs.

Related to this article, I Bobolea declares to have received honoraria from Novartis, GSK, Teva, and Astra Zeneca, for speaking at symposia and as a member of advisory boards. She also received financial support from the aforementioned companies for attending scientific symposia and other educational programs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Precision Medicine and Allergy Treatments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobolea, I., Picado, C. Aspirin Desensitization in NERD in the Era of Biologics: First or Last Resource?. Curr Treat Options Allergy 9, 91–106 (2022). https://doi.org/10.1007/s40521-022-00300-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-022-00300-x

Keywords

Navigation