Log in

Malaria Therapeutic Paradigm: An Evolution Towards Commercial Drug Delivery Technology

  • Review
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

Malaria and other parasitic infections pose serious health risks to millions of people worldwide each year. Oral medication is a crucial component in a multi-prolonged approach to effectively managing malaria. The use of oral antimalarial medications is essential for both treating and preventing malaria. They are essential because of their effectiveness in focusing on the different phases involved in the life cycle of malarial parasite which is taking place inside the human body. Oral drugs work against Plasmodium in many ways, from quickly eliminating active parasites to completely eliminating latent versions that are stored in the liver. While lowering the possibility of medication resistance, the introduction of combination medicines, such artemisinin-based combination medicines (ACTs), has greatly improved treatment efficacy. But there are still issues, such as drug-resistant forms of the malaria parasite emerging, which emphasizes the need for continued investigation and the creation of novel oral treatments. Furthermore, maintaining access to these drugs continues to be a major challenge in the fight against malaria, especially in areas with low resources. To sum up, oral therapy is an essential component involved in the treatment of parasitic diseases like malaria. In order to lessen the impact of these diseases worldwide and eventually move towards their eradication, it is imperative that technology continues to be innovative, accessible, and integrated into complete healthcare programmes. WHO advised in October 2021 that individuals in places with risk of malaria (Plasmodium falciparum) transmission should start receiving the different dosage of vaccine because of its great safety profile and high effect. By concentrating on the parasite’s sporozoite stage and blocking its ability to enter the liver, the RTS, S vaccine seeks to develop protection against P. falciparum.

Recent Findings

In general, vaccines are challenged by the possibility of resistant strains emerging, affecting their vaccination effectiveness if the parasite experiences genetic alterations that enable it to avoid the immunological response that the vaccine triggers. Malaria is efficiently managed with a multi-prolonged strategy that includes oral treatment. Because oral antimalarial drugs effectively target many stages of the malarial parasite life cycle inside the human body, their usage is crucial for treating and preventing malaria.

Summary

In this study, we are going to discuss about the seminal delivery systems for drug which are in lab, market, and clinical trials for treatment of malaria. Also, we focused on the commercial and conventional drug delivery systems which can be more effective and the challenges behind their success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO, World malaria report, World Health Organization. Geneva: Switzerland. 2019.

  2. Sultana M, Sheikh N, Mahumud RA, Jahir T, Islam Z, Sarker AR. Prevalence and associated determinants of malaria parasites among Kenyan children. Trop Med Health. 2017;45:25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ashley EA, Phyo AP. Drugs in development for malaria. Drugs. 2018;78:861–79. https://doi.org/10.1007/s40265-018-0911-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashton TD, Devine SM, Möhrle JJ, Laleu B, Burrows JN, Charman SA, et al. The development process for discovery and clinical advancement of modern antimalarials. J Med Chem. 2019;62:10526–62. https://doi.org/10.1021/acs.jmedchem.9b00761.

    Article  CAS  PubMed  Google Scholar 

  5. Belete TM. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des devel Ther. 2020;14:3875–89. https://doi.org/10.2147/DDDT.S265602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charlie-Silva I, Fraceto LF, De Melo NFS. Progress in nanodrug delivery of artemisinin and its derivatives: Towards to use in immunomodulatory approaches. Artif Cells Nanomed Biotechnol. 2018;46:S611–20. https://doi.org/10.1080/21691401.2018.1505739.

    Article  CAS  PubMed  Google Scholar 

  7. Burrows JN, Duparc S, Gutteridge WE, et al. New developments in anti-malarial target candidate and product profiles. Malar J. 2017;16(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. World Health Organization (2022). “Malaria vaccine: WHO position paper – March 2022”. Weekly Epidemiol Record. 97(9): 60–78. hdl:10665/352337.

  9. Otieno L, Oneko M, Otieno W, Abuodha J, Owino E, Odero C, Mendoza YG, Andagalu B, Awino N, Ivinson K, et al. Safety and immunogenicity of RTS, S/AS01 malaria vaccine in infants andchildren with WHO stage 1 or 2 HIV disease: a randomised, double-blind, controlled trial. Lancet Infect Dis. 2016;16(10):1134–44. https://doi.org/10.1016/S1473-3099(16)30161-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rts S, Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386(9988):31–45. https://doi.org/10.1016/S0140-6736(15)60721.

    Article  Google Scholar 

  11. Venkatraman N, Bowyer G, Edwards N, et al. High level efficacy in humans of a next-generation Plasmodium falciparum anti-sporozoite vaccine: R21 in Matrix-M (TM) adjuvant. Am J Trop Med Hyg. 2017;97:594.

    Google Scholar 

  12. •• Laurens, Matthew. (2019). RTS,S/AS01 vaccine (Mosquirix™): an overview. Hum Vaccin Immunother. 16. https://doi.org/10.1080/21645515.2019.1669415. This paper contains all the important information about the efficacy of RTS,S/AS01 vaccine under clinical trial.

  13. •• Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. The Lancet. 2021;397(10287):1809–18. https://doi.org/10.1016/S0140-6736(21)00943-0. This reference was selected as it contains information about the R21 in adjuvant Matrix-M vaccine efficacy under clinical trial.

    Article  CAS  Google Scholar 

  14. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. 2017;7:46621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magnusson SE, Reimer JM, Karlsson KH, Lilja L, Bengtsson KL, Stertman L. Immune enhancing properties of the novel Matrix- M™ adjuvant leads to potentiated immune responses to an influenza vaccine in mice. Vaccine. 2013;31:1725–33.

    Article  CAS  PubMed  Google Scholar 

  16. Njau IW, Datoo MS, Sang S, et al. A Phase Ib, open-label, age de-escalation, dose escalation study to evaluate the safety and tolerability of different doses of a candidate malaria vaccine adjuvanted R21 (R21/MM) in adults, young children and infants in Kilifi. Kenya Am J Trop Med Hyg. 2020;103:226.

    Google Scholar 

  17. •• White MT, Verity R, Griffin JT, et al. Immunogenicity of the RTS, S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect Dis. 2015;15(12):1450–8. https://doi.org/10.1016/S1473-3099(15)00239-X. The study conducted by the researchers were important in determination of therapeutic efficacy of vaccines under clinical trial which added value to this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bree D, Levy D. Drug resistance in plasmodium. Nat Rev Microbiol. 2018;176:139–48.

    Google Scholar 

  19. Adebayo JO, Tijjani H, Adegunloye AP, et al. Enhancing the antimalarial activity of artesunate. Parasitol Res. 2020;119:2749–64. https://doi.org/10.1007/s00436-020-06786-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinheiro LCS, Feitosa LM, Silveira FFD, Boechat N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An Acad Bras Cienc. 2018;90(1 Suppl 2):1251–71.

    Article  CAS  PubMed  Google Scholar 

  21. Jain A, Sisodia J. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): 2022. Quinidine.

  22. Koehne E, Adegnika AA, Held J, Kreidenweiss A. Pharmacotherapy for artemisinin-resistant malaria. Expert Opin Pharmacother. 2021;22(18):2483–93.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmad SS, Rahi M, Ranjan V, Sharma A. Mefloquine as a prophylaxis for malaria needs to be revisited. Int J Parasitol Drugs Drug Resist. 2021;17:23–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okada M, Guo P, Nalder SA, Sigala PA. Doxycycline has distinct apicoplast-specific mechanisms of antimalarial activity. Elife. 2020;02:9.

    Google Scholar 

  25. Ribbiso KA, Heller LE, Taye A, et al. Artemisinin-based drugs target the Plasmodium falciparum heme detoxification pathway. Antimicrob Agents Chemother. 2021;65(4):e02137-e2220. https://doi.org/10.1128/aac.02137-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10(1):1–2.

    Article  Google Scholar 

  27. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Committee to Review Long-Term Health Effects of Antimalarial Drugs; Board on Population Health and Public Health Practice. Assessment of long-term health effects of antimalarial drugs when used for prophylaxis. Styka AN, Savitz DA, editors. Washington (DC): National Academies Press (US); 2020.

  28. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Committee to Review Long-Term Health Effects of Antimalarial Drugs; Board on Population Health and Public Health Practice; Styka AN, Savitz DA, editors. Assessment of long-term health effects of antimalarial drugs when used for prophylaxis. Washington (DC): National Academies Press (US); 2020, Mefloquine. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556592/

  29. • Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. Tracking Resistance to Artemisinin Collaboration (TRAC). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23. https://doi.org/10.1056/NEJMoa1314981. This paper contains information on artemisinin resistance against the plasmodium falciparum malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dziekan JM, Yu H, Chen D, Dai L, Wirjanata G, Larsson A, Prabhu N, Sobota RM, Bozdech Z, Nordlund P. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med. 2019;11(473):eaau3174. https://doi.org/10.1126/scitranslmed.aau3174.

    Article  CAS  PubMed  Google Scholar 

  31. Ackert J, Mohamed K, Slakter JS, El-Harazi S, Berni A, Gevorkyan H, Hardaker E, Hussaini A, Jones SW, Koh GCKW, Patel J, Rasmussen S, Kelly DS, Barañano DE, Thompson JT, Warren KA, Sergott RC, Tonkyn J, Wolstenholme A, Coleman H, Yuan A, Duparc S, Green JA. Randomized placebo-controlled trial evaluating the ophthalmic safety of single-dose tafenoquine in healthy volunteers. Drug Saf. 2019;42(9):1103–14. https://doi.org/10.1007/s40264-019-00839-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Apolinário AC, Salata GC, Bianco AFR, Fukumori C, Lopes LB. Opening the pandora’s box of nanomedicine: there is needed plenty ofroom at the bottom. Quim Nova. 2020;43:212–25. https://doi.org/10.21577/0100-4042.20170481.

    Article  CAS  Google Scholar 

  33. Alven S, Aderibigbe BA. Nanoparticles formulations of artemisininand derivatives as potential therapeutics for the treatment of cancer, leishmaniasisand Malaria. Pharmaceutics. 2020;12(8):748. https://doi.org/10.3390/pharmaceutics12080748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Agbo CP, Ugwuanyi TC, Ugwuoke WI, Mcconville C, Attama AA, Ofokansi KC. Intranasal artesunate-loaded nanostructured lipid carriers: a convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria. J Control Release. 2021;334:224–36. https://doi.org/10.1016/j.jconrel.2021.04.020.

    Article  CAS  PubMed  Google Scholar 

  35. Chauhan AS. Dendrimers for drug delivery. Molecules. 2018;23:E938. https://doi.org/10.3390/molecules23040938.

    Article  CAS  Google Scholar 

  36. Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25:e3982. https://doi.org/10.3390/molecules25173982.

    Article  CAS  Google Scholar 

  37. Baruah UK, Gowthamarajan K, Vanka R, Karri VVSR, Selvaraj K, Jojo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target. 2017;25:567–81. https://doi.org/10.1080/1061186X.2017.1291645.

    Article  CAS  PubMed  Google Scholar 

  38. Calderó G, Fornaguera C, Zadoina L, Dols-Perez A, Solans C. Design of parenteral MNP-loaded PLGA nanoparticles by a low-energyemulsification approach as theragnostic platforms for intravenous orintratumoral administration. Colloids Surf B Biointerfaces. 2017;160:535–42. https://doi.org/10.1016/j.colsurfb.2017.09.060.

    Article  CAS  PubMed  Google Scholar 

  39. Jawahar N, Baruah UK, Singh V. Co-delivery of chloroquinephosphate and azithromycin nanoparticles to overcome drug resistance in malariathrough intracellular targeting. J Pharm Sci Res. 2019;11:33–40.

    CAS  Google Scholar 

  40. • Bhadra D, Yadav AK, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm. 2005;295:221–33. This paper provided information regarding the targeted drug delivery of antimalarial drug with help of different carriers.

    Article  CAS  PubMed  Google Scholar 

  41. Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm. 2008;364(1):119–26. https://doi.org/10.1016/j.ijpharm.2008.07.032.

    Article  CAS  PubMed  Google Scholar 

  42. Mandawgade SD, Sharma S, Pathak S, Patravale VB. Development of SMEDDS using natural lipophile: application to β-artemether delivery. Int J Pharm. 2008;362(1–2):179–83. https://doi.org/10.1016/j.ijpharm.2008.06.021.

    Article  CAS  PubMed  Google Scholar 

  43. Aderibigbe BA, Mhlwatika Z. Dual release kinetics of antimalarials from soy protein isolate-carbopol-polyacrylamide based hydrogels. J Appl Polym Sci. 2016;133(37):43918.

    Article  Google Scholar 

  44. Elmi T, Ardestani MS, Motevalian M, Hesari AK, Hamzeh MS, Zamani Z, Tabatabaie F. Antiplasmodial effect of nano dendrimer G2 loaded with chloroquine in mice infected with Plasmodium berghei. Acta Parasitol. 2022;67(1):298–308. https://doi.org/10.1007/s11686-021-00459-4.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Lu, Wang Y, Wang X, Sun L, Zhou Z, **jian Lu, Zheng Y. Encapsulation of low lipophilic and slightly water-soluble dihydroartemisinin in PLGA nanoparticles with phospholipid to enhance encapsulation efficiency and in vitro bioactivity. J Microencapsul. 2016;33(1):43–52. https://doi.org/10.3109/02652048.2015.1114042.

    Article  CAS  PubMed  Google Scholar 

  46. Shakeel K, Raisuddin S, Ali S, Imam SS, Rahman MA, Jain GK, Ahmad FJ. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res. 2019;29(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  47. Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, Grandfils C, Fernàndez-Busquets X. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomedicine. 2014;10(8):1719–28. https://doi.org/10.1016/j.nano.2014.06.002.

    Article  CAS  PubMed  Google Scholar 

  48. Friedman A, Claypool S, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19:6315–29. https://doi.org/10.2174/13816128113199990375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for malaria chemotherapy: encapsulation vs. polymer therapeutics. Pharm Res. 2018;35(12):237.

    Article  PubMed  Google Scholar 

  50. Nikezić AVV, Bondžić AM, Vasić VM. Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci. 2020;151:105412. https://doi.org/10.1016/j.ejps.2020.105412.

    Article  CAS  PubMed  Google Scholar 

  51. Akpa PA, Ugwuoke JA, Attama AA, Ugwu CN, Ezeibe EN, Momoh MA, Echezona AC, Kenechukwu FC. Improved antimalarial activity of caprol-based nanostructured lipid carriers encapsulating artemether-lumefantrine for oral administration. Afr Health Sci. 2020;20(4):1679–97. https://doi.org/10.4314/ahs.v20i4.20.

    Article  PubMed  PubMed Central  Google Scholar 

  52. •• Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother. 2015;60(3):1304–18. https://doi.org/10.1128/AAC.01796-15. This paper contains important information regarding the liposomal delivery of drug and detailed study regarding that was mentioned in this literature review.

    Article  CAS  PubMed  Google Scholar 

  53. • Ismail M, Du Y, Ling L, Li X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int J Pharm. 2019;562:162–71. https://doi.org/10.1016/j.ijpharm.2019.03.031.This paper contains information about conjugate based novel delivery of artesunate with heparin, which added a value to this paper.

    Article  CAS  PubMed  Google Scholar 

  54. • Movellan J, Urban P, Moles E, de la Fuente JM, Sierra T, Serrano JL, Fernandez-Busquets X. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials. 2014;35:7940–50.This paper talked about the nano delivery of amphiphilic dendrimers for antimalarial activity.

    Article  CAS  PubMed  Google Scholar 

  55. Elmi T, Shafiee Ardestani M, Hajialiani F, Motevalian M, Mohamadi M, Sadeghi S, Zamani Z, Tabatabaie F. Novel chloroquine loaded curcumin based anionic linear globular dendrimer G2: a metabolomics study on Plasmodium falciparumin vitro using (1)H NMR spectroscopy. Parasitology. 2020;147:747–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. •• Thakkar M, Brijesh S. Physicochemical investigation and in vivo activity of anti-malarial drugs co-loaded in Tween 80 niosomes. J Liposome Res. 2018;28(4):315–21. https://doi.org/10.1080/08982104.2017.1376684. This paper was included in this study as it contains information regarding the activity of tween 80 loaded niosomes and detailed study of its therapeutic efficacy has been conducted.

    Article  CAS  PubMed  Google Scholar 

  57. • Dwivedi P, Khatik R, Khandelwal K, et al. Preparation and characterization of solid lipid nanoparticles of antimalarial drug arteether for oral administration. J Biomater Tissue Eng. 2014;4(2):133–7.This paper provided knowledge about Preparation and characterization of solid lipid nanoparticles of antimalarial drug arteether for oral administration.

    Article  CAS  Google Scholar 

  58. • Omwoyo WN, Melariri P, Gathirwa JW, et al. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomed Nanotechnol Biol Med. 2016;12(3):801–9. https://doi.org/10.1016/j.nano.2015.11.017.This paper contains information about Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed the manuscript with some lab findings. Both reviewed the manuscript.

Corresponding author

Correspondence to Neha Bajwa.

Ethics declarations

Conflict of Interest

Non- financial interest.

Human and Animal Rights and Inform Consent

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Bajwa, N. Malaria Therapeutic Paradigm: An Evolution Towards Commercial Drug Delivery Technology. Curr Treat Options Infect Dis (2024). https://doi.org/10.1007/s40506-024-00273-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40506-024-00273-2

Keywords

Navigation