Log in

Catechol-O-Methyltransferase Effects on Smoking: a Review and Proof of Concept of Sex-Sensitive Effects

  • Addictions (M Potenza and E DeVito, Section Editors)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews recent research on how catechol-O-methyltransferase (COMT) may impact cigarette smoking behavior, and how effects may be sex-sensitive. Preliminary data are presented on sex-sensitive effects of COMT on response to short-term abstinence in individuals who smoke.

Recent Findings

Although research is mixed, functional variants in the COMT gene have been linked with smoking behavior, cessation outcomes, and nicotine abstinence-related symptoms. Our proof-of-concept preliminary data from a human laboratory study of individuals who smoke cigarettes found that those with the high COMT enzyme activity genotype (Val/Val) reported more severe smoking urges and withdrawal symptoms following overnight abstinence than Met carriers. These effects were present in women, but not in men and were abstinent dependent, in that they dissipated following nicotine administration.

Summary

The preliminary data showing sex-sensitive pharmacogenetic effects may shed light on mechanisms contributing to sex differences in barriers to smoking cessation or potential sex-specific treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. USDHHS. The health consequences of smoking—50 years of progress. A report of the surgeon general. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. 2014.

  2. USDHHS. Cigarette smoking among adults—United States, 1998. Morb Mortal Weekly Rep: Center Dis Control Prev. 2000;881–4.

  3. Smith PH, Bessette AJ, Weinberger AH, Sheffer CE, McKee SA. Sex/gender differences in smoking cessation: a review. Prev Med. 2016;92:135–40. https://doi.org/10.1016/j.ypmed.2016.07.013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cepeda-Benito A, Reynoso JT, Erath S. Meta-analysis of the efficacy of nicotine replacement therapy for smoking cessation: differences between men and women. J Consult Clin Psychol. 2004;72(4):712–22. https://doi.org/10.1037/0022-006X.72.4.712.

    Article  PubMed  Google Scholar 

  5. Allen SS, Bade T, Hatsukami D, Center B. Craving, withdrawal, and smoking urges on days immediatelyprior to smoking relapse. Nicotine Tob Res. 2008;10(1):35–45. https://doi.org/10.1080/14622200701705076.

    Article  PubMed  Google Scholar 

  6. Leventhal AM, Waters AJ, Boyd S, Moolchan ET, Lerman C, Pickworth WB. Gender differences in acute tobacco withdrawal: effects on subjective, cognitive, and physiological measures. Exp Clin Psychopharmacol. 2007;15(1):21–36. https://doi.org/10.1037/1064-1297.15.1.21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. al'Absi M, Amunrud T, Wittmers LE. Psychophysiological effects of nicotine abstinence and behavioral challenges in habitual smokers. Pharmacol Biochem Behav. 2002;72(3):707–16.

  8. Faulkner P, Petersen N, Ghahremani DG, Cox CM, Tyndale RF, Hellemann GS, et al. Sex differences in tobacco withdrawal and responses to smoking reduced-nicotine cigarettes in young smokers. Psychopharmacology. 2018;235(1):193–202. https://doi.org/10.1007/s00213-017-4755-x.

    Article  PubMed  CAS  Google Scholar 

  9. Merritt PS, Cobb AR, Cook GI. Sex differences in the cognitive effects of tobacco abstinence: a pilot study. Exp Clin Psychopharmacol. 2012;20(4):258–63. https://doi.org/10.1037/a0027414.

    Article  PubMed  Google Scholar 

  10. Benowitz NL, Hatsukami D. Gender differences in the pharmacology of nicotine addiction. Addict Biol. 1998;3(4):383–404.

    Article  PubMed  CAS  Google Scholar 

  11. Chen LS, Horton A, Bierut L. Pathways to precision medicine in smoking cessation treatments. Neurosci Lett. 2018;669:83–92. https://doi.org/10.1016/j.neulet.2016.05.033.

    Article  PubMed  CAS  Google Scholar 

  12. Herman AI, DeVito EE, Jensen KP, Sofuoglu M. Pharmacogenetics of nicotine addiction: role of dopamine. Pharmacogenomics. 2014;15(2):221–34. https://doi.org/10.2217/pgs.13.246.

    Article  PubMed  CAS  Google Scholar 

  13. Tammimaki AE, Mannisto PT. Are genetic variants of COMT associated with addiction? Pharmacogenet Genomics. 2010;20(12):717–41. https://doi.org/10.1097/FPC.0b013e328340bdf2. Meta-analysis supporting Val as the risk allele for niotine dependence.

  14. Tunbridge EM, Harrison PJ. Importance of the COMT gene for sex differences in brain function and predisposition to psychiatric disorders. In: Neill JC, Kulkarni J, editors. Curr Topics Behav Neurosci. Berlin: Springer-Verlag; 2010. Review of potential sex-sensitive effects of COMT on psychiatric disorders, including addiction.

  15. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75(5):807–21. https://doi.org/10.1086/425589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R, et al. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology. 2007;32(5):1011–20. https://doi.org/10.1038/sj.npp.1301227.

    Article  PubMed  CAS  Google Scholar 

  17. Ceravolo R, Piccini P, Bailey DL, Jorga KM, Bryson H, Brooks DJ. 18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease. Synapse. 2002;43(3):201–7. https://doi.org/10.1002/syn.10034.

    Article  PubMed  CAS  Google Scholar 

  18. Laatikainen LM, Sharp T, Harrison PJ, Tunbridge EM. Sexually dimorphic effects of catechol-O-methyltransferase (COMT) inhibition on dopamine metabolism in multiple brain regions. PLoS One. 2013;8(4):e61839. https://doi.org/10.1371/journal.pone.0061839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci. 2007;27(38):10196–209. https://doi.org/10.1523/JNEUROSCI.0665-07.2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Brody AL, Mandelkern MA, Olmstead RE, Scheibal D, Hahn E, Shiraga S, et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry. 2006;63(7):808–16. https://doi.org/10.1001/archpsyc.63.7.808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–9. https://doi.org/10.1038/nn1578.

    Article  PubMed  CAS  Google Scholar 

  23. Subramaniyan M, Dani JA. Dopaminergic and cholinergic learning mechanisms in nicotine addiction. Ann N Y Acad Sci. 2015;1349:46–63. https://doi.org/10.1111/nyas.12871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang L, Dong Y, Doyon WM, Dani JA. Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiatry. 2012;71(3):184–91. https://doi.org/10.1016/j.biopsych.2011.07.024.

    Article  PubMed  CAS  Google Scholar 

  25. Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, et al. Smoking-induced ventral striatum dopamine release. Am J Psychiatry. 2004;161(7):1211–8.

    Article  PubMed  Google Scholar 

  26. Le Foll B, Guranda M, Wilson AA, Houle S, Rusjan PM, Wing VC, et al. Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology. 2014;39(2):415–24. https://doi.org/10.1038/npp.2013.209.

    Article  PubMed  CAS  Google Scholar 

  27. Brody AL, Mandelkern MA, Olmstead RE, Allen-Martinez Z, Scheibal D, Abrams AL, et al. Ventral striatal dopamine release in response to smoking a regular vs a denicotinized cigarette. Neuropsychopharmacology. 2009;34(2):282–9. https://doi.org/10.1038/npp.2008.87.

    Article  PubMed  CAS  Google Scholar 

  28. Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse. 2004;54(2):65–71. https://doi.org/10.1002/syn.20066.

    Article  PubMed  CAS  Google Scholar 

  29. Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol. 1999;39:19–52. https://doi.org/10.1146/annurev.pharmtox.39.1.19.

    Article  PubMed  CAS  Google Scholar 

  30. Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology. 2019;44(1):166–83. https://doi.org/10.1038/s41386-018-0125-6.

    Article  PubMed  CAS  Google Scholar 

  31. Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol. 2015;65:139–50. https://doi.org/10.1016/j.biocel.2015.05.024.

    Article  PubMed  CAS  Google Scholar 

  32. Bobzean SA, DeNobrega AK, Perrotti LI. Sex differences in the neurobiology of drug addiction. Exp Neurol. 2014;259:64–74. https://doi.org/10.1016/j.expneurol.2014.01.022.

    Article  PubMed  CAS  Google Scholar 

  33. Laakso A, Vilkman H, Bergman J, Haaparanta M, Solin O, Syvalahti E, et al. Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry. 2002;52(7):759–63.

    Article  PubMed  CAS  Google Scholar 

  34. Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J, et al. Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry. 2006;59(10):966–74. https://doi.org/10.1016/j.biopsych.2006.01.008.

    Article  PubMed  CAS  Google Scholar 

  35. Smith CT, Dang LC, Burgess LL, Perkins SF, San Juan MD, Smith DK, et al. Lack of consistent sex differences in D-amphetamine-induced dopamine release measured with [(18)F]fallypride PET. Psychopharmacology. 2019;236(2):581–90. https://doi.org/10.1007/s00213-018-5083-5.

    Article  PubMed  CAS  Google Scholar 

  36. Cosgrove KP, Wang S, Kim SJ, McGovern E, Nabulsi N, Gao H, et al. Sex differences in the brain’s dopamine signature of cigarette smoking. J Neurosci. 2014;34(50):16851–5. https://doi.org/10.1523/JNEUROSCI.3661-14.2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Carcoba LM, Flores RJ, Natividad LA, O’Dell LE. Amino acid modulation of dopamine in the nucleus accumbens mediates sex differences in nicotine withdrawal. Addict Biol. 2018;23(5):1046–54. https://doi.org/10.1111/adb.12556.

    Article  PubMed  CAS  Google Scholar 

  38. de Wit S, Standing HR, Devito EE, Robinson OJ, Ridderinkhof KR, Robbins TW, et al. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion. Psychopharmacology. 2012;219(2):621–31. https://doi.org/10.1007/s00213-011-2563-2.

    Article  PubMed  CAS  Google Scholar 

  39. Robinson OJ, Standing HR, DeVito EE, Cools R, Sahakian BJ. Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males. Psychopharmacology. 2010;211(2):187–95. https://doi.org/10.1007/s00213-010-1880-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sannino S, Gozzi A, Cerasa A, Piras F, Scheggia D, Manago F, et al. COMT genetic reduction produces sexually divergent effects on cortical anatomy and working memory in mice and humans. Cereb Cortex (New York, NY : 1991). 2015;25(9):2529–41. https://doi.org/10.1093/cercor/bhu053.

  41. Sannino S, Padula MC, Manago F, Schaer M, Schneider M, Armando M, et al. Adolescence is the starting point of sex-dichotomous COMT genetic effects. Transl Psychiatry. 2017;7(5):e1141. https://doi.org/10.1038/tp.2017.109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xu J, Qin W, Li Q, Li W, Liu F, Liu B, et al. Prefrontal volume mediates effect of COMT polymorphism on interference resolution capacity in healthy male adults. Cereb Cortex (New York, NY : 1991). 2017;27(11):5211–21. https://doi.org/10.1093/cercor/bhw301.

  43. Domschke K, Deckert J, O’Donovan MC, Glatt SJ. Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(5):667–73. https://doi.org/10.1002/ajmg.b.30494.

    Article  PubMed  CAS  Google Scholar 

  44. Hettema JM, An SS, Bukszar J, van den Oord EJ, Neale MC, Kendler KS, et al. Catechol-O-methyltransferase contributes to genetic susceptibility shared among anxiety spectrum phenotypes. Biol Psychiatry. 2008;64(4):302–10. https://doi.org/10.1016/j.biopsych.2008.03.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hill LD, Lorenzetti MS, Lyle SM, Fins AI, Tartar A, Tartar JL. Catechol-O-methyltransferase Val158Met polymorphism associates with affect and cortisol levels in women. Brain and behavior. 2018;8(2):e00883. https://doi.org/10.1002/brb3.883.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Komiyama M, Yamakage H, Satoh-Asahara N, Ozaki Y, Morimoto T, Shimatsu A, et al. Sex differences in nicotine dependency and depressive tendency among smokers. Psychiatry Res. 2018;267:154–9. https://doi.org/10.1016/j.psychres.2018.06.010.

    Article  PubMed  CAS  Google Scholar 

  47. Risbrough V, Ji B, Hauger R, Zhou X. Generation and characterization of humanized mice carrying COMT158 Met/Val alleles. Neuropsychopharmacology. 2014;39(8):1823–32. https://doi.org/10.1038/npp.2014.29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gurvich C, Rossell SL. Dopamine and cognitive control: sex-by-genotype interactions influence the capacity to switch attention. Behav Brain Res. 2015;281:96–101. https://doi.org/10.1016/j.bbr.2014.11.045.

    Article  PubMed  CAS  Google Scholar 

  49. Hupfeld KE, Vaillancourt DE, Seidler RD. Genetic markers of dopaminergic transmission predict performance for older males but not females. Neurobiol Aging. 2018;66:180.e11-.e21. https://doi.org/10.1016/j.neurobiolaging.2018.02.005.

  50. Costa DS, Bechara A, de Paula JJ, Romano-Silva MA, Correa H, Lage GM, et al. Influence of COMT Val(158)Met polymorphism on emotional decision-making: A sex-dependent relationship? Psychiatry Res. 2016;246:650–5. https://doi.org/10.1016/j.psychres.2016.10.073.

    Article  PubMed  CAS  Google Scholar 

  51. Mier D, Kirsch P, Meyer-Lindenberg A. Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry. 2010;15(9):918–27. https://doi.org/10.1038/mp.2009.36.

    Article  PubMed  CAS  Google Scholar 

  52. White TP, Loth E, Rubia K, Krabbendam L, Whelan R, Banaschewski T, et al. Sex differences in COMT polymorphism effects on prefrontal inhibitory control in adolescence. Neuropsychopharmacology. 2014;39(11):2560–9. https://doi.org/10.1038/npp.2014.107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N. Association study of a functional catechol-O-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett. 2010;473(3):216–9. https://doi.org/10.1016/j.neulet.2010.02.050.

    Article  PubMed  CAS  Google Scholar 

  54. Munafò MR, Freathy RM, Ring SM, St Pourcain B, Smith GD. Association of COMT Val(108/158)Met genotype and cigarette smoking in pregnant women. Nicotine Tob Res. 2011;13(2):55–63. https://doi.org/10.1093/ntr/ntq209.

    Article  PubMed  CAS  Google Scholar 

  55. Suriyaprom K, Tungtrongchitr R, Harnroongroj T. Impact of COMT Val 108/158 Met and DRD2 Taq1B gene polymorphisms on vulnerability to cigarette smoking of Thai males. Journal of molecular neuroscience : MN. 2013;49(3):544–9. https://doi.org/10.1007/s12031-012-9844-z.

    Article  PubMed  CAS  Google Scholar 

  56. Ou WC, Huang YC, Huang CL, Lin MH, Chen YC, Chen YJ, et al. Interaction between cytochrome P450 2A6 and Catechol-O-methyltransferase genes and their association with smoking risk in young men. Behav Brain Funct: BBF. 2017;13(1):8. https://doi.org/10.1186/s12993-017-0127-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bühler KM, Huertas E, Echeverry-Alzate V, Giné E, Moltó E, Montoliu L, et al. Risky alcohol consumption in young people is associated with the fatty acid amide hydrolase gene polymorphism C385A and affective rating of drug pictures. Mol Genet Genomics : MGG. 2014;289(3):279–89. https://doi.org/10.1007/s00438-013-0809-x.

    Article  PubMed  CAS  Google Scholar 

  58. Mutschler J, Abbruzzese E, von der Goltz C, Dinter C, Mobascher A, Thiele H, et al. Lack of association of a functional catechol-O-methyltransferase gene polymorphism with risk of tobacco smoking: results from a multicenter case-control study. Nicotine Tob Res. 2013;15(7):1322–7. https://doi.org/10.1093/ntr/nts334.

    Article  PubMed  CAS  Google Scholar 

  59. Voisey J, Swagell CD, Hughes IP, Lawford BR, Young RM, Morris CP. A novel SNP in COMT is associated with alcohol dependence but not opiate or nicotine dependence: a case control study. Behav Brain Funct: BBF. 2011;7:51. https://doi.org/10.1186/1744-9081-7-51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. O’Loughlin J, Sylvestre MP, Labbe A, Low NC, Roy-Gagnon MH, Dugas EN, et al. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents. PLoS One. 2014;9(12):e115716. https://doi.org/10.1371/journal.pone.0115716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bidwell LC, McGeary JE, Gray JC, Palmer RH, Knopik VS, MacKillop J. An initial investigation of associations between dopamine-linked genetic variation and smoking motives in African Americans. Pharmacol Biochem Behav. 2015;138:104–10. https://doi.org/10.1016/j.pbb.2015.09.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li S, Wang Q, Pan L, Li H, Yang X, Jiang F, et al. The association of dopamine pathway gene score, nicotine dependence and smoking cessation in a rural male population of Shandong. China Am J Addict. 2016;25(6):493–8. https://doi.org/10.1111/ajad.12421.

    Article  PubMed  Google Scholar 

  63. David SP, Strong DR, Leventhal AM, Lancaster MA, McGeary JE, Munafò MR, et al. Influence of a dopamine pathway additive genetic efficacy score on smoking cessation: results from two randomized clinical trials of bupropion. Addiction. 2013;108(12):2202–11. https://doi.org/10.1111/add.12325.

    Article  PubMed  Google Scholar 

  64. Salloum NC, Buchalter ELF, Chanani S, Espejo G, Ismail MS, Laine RO, et al. From genes to treatments: a systematic review of the pharmacogenetics in smoking cessation. Pharmacogenomics. 2018;19(10):861–71. https://doi.org/10.2217/pgs-2018-0023. Systematic review of pharmacogenetic studies of smoking cessation, includind studies of COMT.

  65. Johnstone EC, Elliot KM, David SP, Murphy MF, Walton RT, Munafo MR. Association of COMT Val108/158Met genotype with smoking cessation in a nicotine replacement therapy randomized trial. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1065–9. https://doi.org/10.1158/1055-9965.EPI-06-0936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sun H, Guo S, Chen D, Yang F, Zou Y, Di X, et al. Association of functional COMT Val108/Met polymorphism with smoking cessation in a nicotine replacement therapy. J Neural Transm. 2012;119(12):1491–8. https://doi.org/10.1007/s00702-012-0841-8.

    Article  PubMed  CAS  Google Scholar 

  67. De Ruyck K, Nackaerts K, Beels L, Werbrouck J, De Volder A, Meysman M, et al. Genetic variation in three candidate genes and nicotine dependence, withdrawal and smoking cessation in hospitalized patients. Pharmacogenomics. 2010;11(8):1053–63. https://doi.org/10.2217/pgs.10.75.

    Article  PubMed  Google Scholar 

  68. Choi HD, Shin WG. Association between catechol-O-methyltransferase (COMT) Val/Met genotype and smoking cessation treatment with nicotine: a meta-analysis. Pharmacogenomics. 2015;16(16):1879–85. https://doi.org/10.2217/pgs.15.127. Meta-analysis finding partial support for COMT links with smoking cessation outcomes.

  69. Herman AI, Jatlow PI, Gelernter J, Listman JB, Sofuoglu M. COMT Val158Met modulates subjective responses to intravenous nicotine and cognitive performance in abstinent smokers. Pharmacogenomics J. 2013. https://doi.org/10.1038/tpj.2013.1.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ashare RL, Valdez JN, Ruparel K, Albelda B, Hopson RD, Keefe JR, et al. Association of abstinence-induced alterations in working memory function and COMT genotype in smokers. Psychopharmacology. 2013;230(4):653–62. https://doi.org/10.1007/s00213-013-3197-3.

    Article  PubMed  CAS  Google Scholar 

  71. Ashare RL, Wileyto EP, Ruparel K, Goelz PM, Hopson RD, Valdez JN, et al. Effects of tolcapone on working memory and brain activity in abstinent smokers: a proof-of-concept study. Drug Alcohol Depend. 2013;133(3):852–6. https://doi.org/10.1016/j.drugalcdep.2013.09.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bowers H, Smith D, de la Salle S, Choueiry J, Impey D, Philippe T, et al. COMT polymorphism modulates the resting-state EEG alpha oscillatory response to acute nicotine in male non-smokers. Genes Brain Behav. 2015;14(6):466–76. https://doi.org/10.1111/gbb.12226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. de la Salle S, Smith D, Choueiry J, Impey D, Philippe T, Dort H, et al. Effects of COMT genotype on sensory gating and its modulation by nicotine: differences in low and high P50 suppressors. Neuroscience. 2013;241:147–56. https://doi.org/10.1016/j.neuroscience.2013.03.029.

    Article  PubMed  CAS  Google Scholar 

  74. Lee MR, Gallen CL, Ross TJ, Kurup P, Salmeron BJ, Hodgkinson CA, et al. A preliminary study suggests that nicotine and prefrontal dopamine affect cortico-striatal areas in smokers with performance feedback. Genes Brain Behav. 2013;12(5):554–63. https://doi.org/10.1111/gbb.12027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Pomerleau CS, Carton SM, Lutzke ML, Flessland KA, Pomerleau OF. Reliability of the Fagerstrom Tolerance Questionnaire and the Fagerstrom Test for Nicotine Dependence. Addict Behav. 1994;19(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  76. First MB, Spitzer RL, Gibbon M, Williams JB. Structured clinical interview for DSM-IV axis I disorders–patient edition. New York: Biometrics Research Department, New York State Psychiatric Institution; 1996.

    Google Scholar 

  77. Cox LS, Tiffany ST, Christen AG. Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings. Nicotine Tob Res. 2001;3(1):7–16. https://doi.org/10.1080/14622200020032051.

    Article  PubMed  CAS  Google Scholar 

  78. Hughes JR, Hatsukami D. Signs and symptoms of tobacco withdrawal. Arch Gen Psychiatry. 1986;43(3):289–94.

    Article  PubMed  CAS  Google Scholar 

  79. DeVito EE, Herman AI, Waters AJ, Valentine GW, Sofuoglu M. Subjective, Physiological, and cognitive responses to intravenous nicotine: effects of sex and menstrual cycle phase. Neuropsychopharmacology. 2013. https://doi.org/10.1038/npp.2013.339. Prior publication on a subset of the dataset included in the proof-of-concept secondary analysis; provides additional methodological details.

  80. Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, et al. Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genomics. 2005;15(6):393–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Munafo MR, Johnstone EC, Guo B, Murphy MF, Aveyard P. Association of COMT Val108/158Met genotype with smoking cessation. Pharmacogenet Genomics. 2008;18(2):121–8. https://doi.org/10.1097/FPC.0b013e3282f44daa.

    Article  PubMed  CAS  Google Scholar 

  82. Omidvar M, Stolk L, Uitterlinden AG, Hofman A, Van Duijn CM, Tiemeier H. The effect of catechol-O-methyltransferase Met/Val functional polymorphism on smoking cessation: retrospective and prospective analyses in a cohort study. Pharmacogenet Genomics. 2009;19(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  83. Loughead J, Wileyto EP, Valdez JN, Sanborn P, Tang K, Strasser AA, et al. Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol Psychiatry. 2009;14(8):820–6. https://doi.org/10.1038/mp.2008.132.

    Article  PubMed  CAS  Google Scholar 

  84. Wang Z, Ray R, Faith M, Tang K, Wileyto EP, Detre JA, et al. Nicotine abstinence-induced cerebral blood flow changes by genotype. Neurosci Lett. 2008;438(3):275–80. https://doi.org/10.1016/j.neulet.2008.04.084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. David SP, Johnstone EC, Churchman M, Aveyard P, Murphy MF, Munafò MR. Pharmacogenetics of smoking cessation in general practice: results from the patch II and patch in practice trials. Nicotine Tob Res. 2011;13(3):157–67. https://doi.org/10.1093/ntr/ntq246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. David SP, Johnstone E, Griffiths SE, Murphy M, Yudkin P, Mant D, et al. No association between functional catechol O-methyl transferase 1947A>G polymorphism and smoking initiation, persistent smoking or smoking cessation. Pharmacogenetics. 2002;12(3):265–8.

    Article  PubMed  CAS  Google Scholar 

  87. McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics. 2000;10(6):483–91.

    Article  PubMed  CAS  Google Scholar 

  88. Breitling LP, Dahmen N, Illig T, Rujescu D, Nitz B, Raum E, et al. Variants in COMT and spontaneous smoking cessation: retrospective cohort analysis of 925 cessation events. Pharmacogenet Genomics. 2009;19(8):657–9. https://doi.org/10.1097/FPC.0b013e32832fabf3.

    Article  PubMed  CAS  Google Scholar 

  89. Shafa R, Abdolmaleky HM, Yaqubi S, Smith C, Ghaemi SN. COMT- inhibitors may be a promising tool in treatment of marijuana addiction. Am J Addict. 2009;18:321–31.

    Google Scholar 

  90. Grant JE, Odlaug BL, Chamberlain SR, Hampshire A, Schreiber LR, Kim SW. A proof of concept study of tolcapone for pathological gambling: relationships with COMT genotype and brain activation. Eur Neuropsychopharmacol. 2013. https://doi.org/10.1016/j.euroneuro.2013.07.008.

    Article  PubMed  Google Scholar 

  91. Gasparini M, Fabrizio E, Bonifati V, Meco G. Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J Neural Transm. 1997;104(8–9):887–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stacy Minnix, Lance Barnes, Katherine Barrett, Christopher Cryan, and Ellen Mitchell, R.N., for their valuable contributions to subject recruitment and data collection, and thank members of Dr. Joel Gelernter’s laboratory for help with genoty**. We also thank the participants for their time.

Funding

The collection of the data (which was used for the secondary analysis) was supported by the National Institute on Drug Abuse (NIDA) (R01 DA12690, R01 DA12849, R03 DA027474) and the Veterans Administration Mental Illness Research, Education and Clinical Center (MIRECC); EED received support from K12 DA031050 from NIDA, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Office of Research on Women’s Health (ORWH), and NIH Office of the Director (OD) and 5R21DA038253-02 from NIDA. The funding bodies had no role in the collection, analysis, or the decision to publish these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise E. DeVito.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Addictions

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeVito, E.E., Sofuoglu, M. Catechol-O-Methyltransferase Effects on Smoking: a Review and Proof of Concept of Sex-Sensitive Effects. Curr Behav Neurosci Rep 9, 113–123 (2022). https://doi.org/10.1007/s40473-022-00251-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-022-00251-2

Keywords

Navigation