Log in

A comprehensive exploration of ejector design, operational factors, performance metrics, and practical applications

  • Review Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The purpose of this paper is to provide the review details on the research attempt made in the field of ejector systems. This review paper provides details on design methodology, geometrical parameters, operating parameters effect, CFD studies, turbulence model selection, working fluid, and irreversibility of the ejector system. The journey of two-stage ejectors with their geometrical details and auxiliary entrainment positions is also presented. It gives a higher entrainment ratio as compared with a single-stage ejector. The new techniques, constant rate of momentum change and constant rate of kinetic energy, also came into the knowledge to design physics-based single and two-stage ejectors. This method helped in the design to create variable area geometry of the nozzle, mixing, and diffuser. This helps to remove the thermodynamic loss or irreversibility of conventional ejectors due to sudden area change at the exit/inlet of the diffuser section. In addition, the performance of the ejector, including entrainment ratio, nozzle exit position, and back pressure effect, is also presented. Finally, the effect of different working fluids on the performance of the ejector and application with various fields is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CRKEC:

Constant rate of kinetic energy change

CRMC:

Constant rate of momentum change

CAM:

Constant area mixing

CPM:

Constant pressure mixing

CFD:

Computational fluid dynamics

TVC:

Thrust vector control

TR:

Thrust reversal

AR:

Area ratio

NXP:

Nozzle exit position

RANS:

Reynolds averaged Navier–Stokes

SSE:

Single-stage ejector

TSE:

Two-stage ejector

COP:

Coeficient of performance

SST:

Shear stress transport

References

  1. Keenan JH, Neumann EP (1942) Asimple air ejector. ASME J Appl Mech trans 64:A75-81

    Google Scholar 

  2. Keenan JH, Neumann EP, Lustwerk F (1950) An investigation of ejector design by analysis and experiment. ASME J Appl Mech trans 72:299–309

    Google Scholar 

  3. Tashtoush BM, Moh’d A A, Khasawneh MAAN (2019) A comprehensive review of ejector design, performance, and applications. Appl Energy 240:138–172

    Google Scholar 

  4. Pianthong K, Seehanam W, Behnia M, Sriveerakul T, Aphornratana S (2007) Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Convers Manage 48(9):2556–2564

    Google Scholar 

  5. Munday JT, Bagster DF (1977) A new ejector theory applied to steam jet refrigeration. Ind Eng Chem Process Des Dev 16(4):442–449

    Google Scholar 

  6. Sokolov M, Hershgal D (1990) Enhanced ejector refrigeration cycles powered by low grade heat. Part 1. Systems characterization. Int J Refrig 13(6):351–356

    Google Scholar 

  7. Chunnanond K, Aphornratana S (2004) An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector. Appl Therm Eng 24(2–3):311–322

    Google Scholar 

  8. Eames IW (2002) A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method. Appl Therm Eng 22(2):121–131

    Google Scholar 

  9. Kumar V, Singhal G, Subbarao PMV (2013) Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects. Appl Therm Eng 60(1–2):61–71

    Google Scholar 

  10. Zhu Y, Cai W, Wen C, Li Y (2007) Shock circle model for ejector performance evaluation. Energy Convers Manage 48(9):2533–2541

    Google Scholar 

  11. Chang YJ, Chen YM (2000) Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle. Exp Therm Fluid Sci 22(3–4):203–211

    Google Scholar 

  12. Opgenorth MJ, Sederstrom D, McDermott W, Lengsfeld CS (2012) Maximizing pressure recovery using lobed nozzles in a supersonic ejector. Appl Therm Eng 37:396–402

    Google Scholar 

  13. Yang X, Long X, Yao X (2012) Numerical investigation on the mixing process in a steam ejector with different nozzle structures. Int J Therm Sci 56:95–106

    Google Scholar 

  14. Kong FS, Kim HD, ** Y, Setoguchi T (2013) Application of Chevron nozzle to a supersonic ejector–diffuser system. Procedia Eng 56:193–200

    Google Scholar 

  15. Rao SM, Jagadeesh G (2014) Novel supersonic nozzles for mixing enhancement in supersonic ejectors. Appl Therm Eng 71(1):62–71

    Google Scholar 

  16. Fu W, Li Y, Liu Z, Wu H, Wu T (2016) Numerical study for the influences of primary nozzle on steam ejector performance. Appl Therm Eng 106:1148–1156

    Google Scholar 

  17. Wang L, Yan J, Wang C, Li X (2017) Numerical study on optimization of ejector primary nozzle geometries. Int J Refrig 76:219–229

    Google Scholar 

  18. Khoury F, Heyman M, Resnick W (1967) Performance characteristics of self-entrainment ejectors. Ind Eng Chem Process Des Dev 6(3):331–340

    Google Scholar 

  19. Grazzini G, Mariani A (1998) A simple program to design a multi-stagejet-pump for refrigeration cycles. Energy Convers Manage 39(16–18):1827–1834

    Google Scholar 

  20. Butrymowicz D, Śmierciew K, Karwacki J (2014) Investigation of internal heat transfer in ejection refrigeration systems. Int J Refrig 40:131–139

    Google Scholar 

  21. Chen S, Chen G, Fang L (2015) An experimental study and 1-D analysis of an ejector with a movable primary nozzle that operates with R236fa. Int J Refrig 60:19–25

    Google Scholar 

  22. Ma Z, Bao H, Roskilly AP (2017) Thermodynamic modelling and parameter determination of ejector for ejection refrigeration systems. Int J Refrig 75:117–128

    Google Scholar 

  23. Eames IW, Aphornratana S, Haider H (1995) A theoretical and experimental study of a small-scale steam jet refrigerator. Int J Refrig 18(6):378–386

    Google Scholar 

  24. Huang BJ, Chang JM, Wang CP, Petrenko VA (1999) A 1-D analysis of ejector performance. Int J Refrig 22(5):354–364

    Google Scholar 

  25. Ouzzane M, Aidoun Z (2003) Model development and numerical procedure for detailed ejector analysis and design. Appl Therm Eng 23(18):2337–2351

    Google Scholar 

  26. Cardemil JM, Colle S (2012) A general model for evaluation of vapor ejectors performance for application in refrigeration. Energy Convers Manage 64:79–86

    Google Scholar 

  27. Utomo T, Ji M, Kim P, Jeong H and Chung H (2008), CFD analysis on the influence of converging duct angle on the steam ejector performance. Eng Opt, pp.2–8.

  28. Ji M, Utomo T, Woo J, Lee Y, Jeong H, Chung H (2010) CFD investigation on the flow structure inside thermo vapor compressor. Energy 35(6):2694–2702

    Google Scholar 

  29. Lin C, Cai W, Li Y, Yan J, Hu Y, Giridharan K (2013) Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multi-evaporator refrigeration system. Appl Therm Eng 61(2):649–656

    Google Scholar 

  30. Zhu Y, Cai W, Wen C, Li Y (2009) Numerical investigation of geometry parameters for design of high-performance ejectors. Appl Therm Eng 29(5–6):898–905

    Google Scholar 

  31. Chong D, Yan J, Wu G, Liu J (2009) Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas. Appl Therm Eng 29(14–15):2799–2807

    Google Scholar 

  32. Kouhikamali R, Sharifi N (2012) Experience of modification of thermo-compressors in multiple effects desalination plants in Assaluyeh in IRAN. Appl Therm Eng 40:174–180

    Google Scholar 

  33. Yapici R, Ersoy HK (2005) Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Convers Manage 46(18–19):3117–3135

    Google Scholar 

  34. Sriveerakul T, Aphornratana S, Chunnanond K (2007) Performance prediction of steam ejector using computational fluid dynamics: part 1. Validation of the CFD results. Int J Therm Sci 46(8):812–822

    Google Scholar 

  35. Varga S, Oliveira AC, Diaconu B (2009) Influence of geometrical factors on steam ejector performance–a numerical assessment. Int J Refrig 32(7):1694–1701

    Google Scholar 

  36. Jia Y, Wenjian C (2012) Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant. Energy Convers Manage 53(1):240–246

    Google Scholar 

  37. Yan J, Li S, Li R (2021) Numerical study on the auxiliary entrainment performance of an ejector with different area ratio. Appl Therm Eng 185:116369

    Google Scholar 

  38. Li C, Yan J, Li Y, Cai W, Lin C, Chen H (2016) Experimental study on a multi-evaporator refrigeration system with variable area ratio ejector. Appl Therm Eng 102:196–203

    Google Scholar 

  39. Chen J, Havtun H, Palm B (2014) Investigation of ejectors in refrigeration system: optimum performance evaluation and ejector area ratios perspectives. Appl Therm Eng 64(1–2):182–191

    Google Scholar 

  40. Yapici R, Ersoy HK, Aktoprakoğlu A, Halkacı HS, Yiğit O (2008) Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. Int J Refrig 31(7):1183–1189

    Google Scholar 

  41. Ariafar K, Buttsworth D, Sharifi N, Malpress R (2014) Ejector primary nozzle steam condensation: area ratio effects and mixing layer development. Appl Therm Eng 71(1):519–527

    Google Scholar 

  42. Zhu Y and Jiang P, (2011), Geometry optimization study of ejector in anode recirculation solid oxygen fuel cell system. In 2011 6th IEEE conference on industrial electronics and applications (pp. 51–55). IEEE.

  43. Kumar V, Singhal G, Subbarao PMV (2018) Realization of novel constant rate of kinetic energy change (CRKEC) supersonic ejector. Energy 164:694–706

    Google Scholar 

  44. Dong J, Hu Q, Yu M, Han Z, Cui W, Liang D, Ma H, Pan X (2020) Numerical investigation on the influence of mixing chamber length on steam ejector performance. Appl Therm Eng 174:115204

    Google Scholar 

  45. Yadav SK, Pandey KM, Gupta R, Kumar V (2021) Numerical study for the influences of nozzle exit position, mixing, and diffuser section lengths on performance of CRMC ejector. J Braz Soc Mech Sci Eng 43:1–14

    Google Scholar 

  46. Banasiak K, Hafner A, Andresen T (2012) Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. Int J Refrig 35(6):1617–1625

    Google Scholar 

  47. Elbel S, Hrnjak P (2008) Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int J Refrig 31(3):411–422

    Google Scholar 

  48. Li S, Yan J, Liu Z, Yao Y, Li X, Wen N, Zou G (2019) Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks. Energy 189:116347

    Google Scholar 

  49. Aidoun Z, Ouzzane M (2004) The effect of operating conditions on the performance of a supersonic ejector for refrigeration. Int J Refrig 27(8):974–984

    Google Scholar 

  50. Subramanian G, Natarajan SK, Adhimoulame K, Natarajan A (2014) Comparison of numerical and experimental investigations of jet ejector with blower. Int J Therm Sci 84:134–142

    Google Scholar 

  51. Cai L and He M, (2013), A numerical study on the supersonic steam ejector use in steam turbine system. Math Problems Eng

  52. Chen Z, ** X, Dang C, Hihara E (2017) Ejector performance analysis under overall operating conditions considering adjustable nozzle structure. Int J Refrig 84:274–286

    Google Scholar 

  53. Jiang F, Wang Y, Yu B, Wang D, Shi J, Chen J (2019) Effects of various operating conditions on the performance of a CO2 air conditioning system for trains. Int J Refrig 107:105–113

    Google Scholar 

  54. Wen N, Wang L, Yan J, Li X, Liu Z, Li S, Zou G (2019) Effects of operating conditions and cooling loads on two-stage ejector performances. Appl Therm Eng 150:770–780

    Google Scholar 

  55. Ramesh AS, Sekhar SJ (2017) Analytical and numerical studies of a steam ejector on the effect of nozzle exit position and suction chamber angle to fluid flow and system performance. J Appl Fluid Mech 10(1):369–378

    Google Scholar 

  56. Ruangtrakoon N, Thongtip T, Aphornratana S, Sriveerakul T (2013) CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle. Int J Therm Sci 63:133–145

    Google Scholar 

  57. Cizungu K, Mani A, Groll M (2001) Performance comparison of vapour jet refrigeration system with environment friendly working fluids. Appl Therm Eng 21(5):585–598

    Google Scholar 

  58. Sabzpoushan S, Darbandi M and Schneider GE, (2018) Numerical investigation on the effects of operating conditions on the performance of a steam jet-ejector. Proceedings of the 5th international conference of fluid flow, heat and mass transfer (FFHMT'18) Niagara Falls, Canada Paper No. 135 https://doi.org/10.11159/ffhmt18.135

  59. Chen J, Wu J, Wang Z, Luo W (2011) The effect of secondary flows on the starting pressure for a second-throat supersonic ejector. J Therm Sci 20(6):503–509

    Google Scholar 

  60. Guangming C, **aoxiao X, Shuang L, Lixia L, Liming T (2010) An experimental and theoretical study of a CO2 ejector. Int J Refrig 33(5):915–921

    Google Scholar 

  61. Li S, Zhai X, Liu Y, Liu W, Wang L and Zhang J (2021). Effects of working conditions on the performance of an ammonia ejector used in an ocean thermal energy conversion system. Can J Chem Eng.

  62. Wang L, Wang C, Hou W, Zhao H, Zhang H (2017) Experimental investigation on ejector performance near critical back pressure. Int J Refrig 80:158–168

    Google Scholar 

  63. Wu H, Liu Z, Han B, Li Y (2014) Numerical investigation of the influences of mixing chamber geometries on steam ejector performance. Desalination 353:15–20

    Google Scholar 

  64. Haghparast P, Sorin MV, Nesreddine H (2018) The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle. Energy 162:728–743

    Google Scholar 

  65. Zhang J, Zhai X, Li S (2020) Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system. Renew Energy 161:766–776

    Google Scholar 

  66. Han Y, Wang X, Sun H, Zhang G, Guo L, Tu J (2019) CFD simulation on the boundary layer separation in the steam ejector and its influence on the pum** performance. Energy 167:469–483

    Google Scholar 

  67. Smierciew K, Gagan J, Butrymowicz D (2019) Application of numerical modelling for design and improvement of performance of gas ejector. Appl Therm Eng 149:85–93

    Google Scholar 

  68. Chen W, Xue K, Wang Y, Chong D, Yan J (2016) Numerical assessment on the performance of two-stage ejector to boost the low-pressure natural gas. J Nat Gas Sci Eng 34:575–584

    Google Scholar 

  69. Chen W, Fan J, Huang C, Liu S, Chong D, Yan J (2020) Numerical assessment of ejector performance enhancement by means of two-bypass inlets. Appl Therm Eng 171:115086

    Google Scholar 

  70. Xue H, Wang L, Jia L, **e C, Lv Q (2020) Design and investigation of a two-stage vacuum ejector for MED-TVC system. Appl Therm Eng 167:114713

    Google Scholar 

  71. Yan J, Cai Q and Wen H (2021), Optimization on key geometries of a highly coupled two-stage ejector. Appl Therm Eng, 117362.

  72. Wang X, Wang L, Song Y, Deng J, Zhan Y (2021) Optimal design of two-stage ejector for subzero refrigeration system on fishing vessel. Appl Therm Eng 187:116565

    Google Scholar 

  73. Maghsoodi A, Afshari E, Ahmadikia H (2014) Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm. Appl Therm Eng 71(1):410–418

    Google Scholar 

  74. Zhu Y, Li Y, Cai W (2011) Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems. Energy Convers Manage 52(4):1881–1889

    Google Scholar 

  75. Hao X, Gao N, Chen G, Volovyk O, Wang X and Xuan Y, (2020). Experimental investigation of the ejector refrigeration cycle for cascade system application. J Thermal Sci, pp.1–11.

  76. Yan J, Wen N, Wang L, Li X, Liu Z, Li S (2018) Optimization on ejector key geometries of a two-stage ejector-based multi-evaporator refrigeration system. Energy Convers Manage 175:142–150

    Google Scholar 

  77. Chong D, Hu M, Chen W, Wang J, Liu J, Yan J (2014) Experimental and numerical analysis of supersonic air ejector. Appl Energy 130:679–684

    Google Scholar 

  78. Kong F, Kim HD (2015) Analytical and computational studies on the performance of a two-stage ejector–diffuser system. Int J Heat Mass Transf 85:71–87

    Google Scholar 

  79. Yazdani M, Alahyari AA, Radcliff TD (2012) Numerical modeling of two-phase supersonic ejectors for work-recovery applications. Int J Heat Mass Transf 55(21–22):5744–5753

    Google Scholar 

  80. Bodys J, Palacz M, Haida M, Smolka J, Nowak AJ, Banasiak K, Hafner A (2017) Full-scale multi-ejector module for a carbon dioxide supermarket refrigeration system: numerical study of performance evaluation. Energy Convers Manage 138:312–326

    Google Scholar 

  81. Scott D, Aidoun Z, Ouzzane M (2011) An experimental investigation of an ejector for validating numerical simulations. Int J Refrig 34(7):1717–1723

    Google Scholar 

  82. Giacomelli F, Mazzelli F, Milazzo A (2018) A novel CFD approach for the computation of R744 flashing nozzles in compressible and metastable conditions. Energy 162:1092–1105

    Google Scholar 

  83. Li C, Li YZ (2011) Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation. Chem Eng Sci 66(3):405–416

    Google Scholar 

  84. Yang Y, Du W, Ma T, Lin W, Cong M, Yang H, Yu Z (2020) Numerical studies on ejector structure optimization and performance prediction based on a novel pressure drop model for proton exchange membrane fuel cell anode. Int J Hydrog Energy 45(43):23343–23352

    Google Scholar 

  85. Bodys J, Smolka J, Palacz M, Haida M, Banasiak K, Nowak AJ (2021) Experimental and numerical study on the R744 ejector with a suction nozzle bypass. Appl Therm Eng 194:117015

    Google Scholar 

  86. Kuo JK and Hsieh CY (2021), Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system. Energy, 121100.

  87. De Oliveira Marum VJ, Reis LB, Maffei FS, Ranjbarzadeh S, Korkischko I, dos Santos Gioria R, Meneghini JR (2021) Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling. Energy 220:119779

    Google Scholar 

  88. Mazzelli F, Little AB, Garimella S, Bartosiewicz Y (2015) Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects. Int J Heat Fluid Flow 56:305–316

    Google Scholar 

  89. Mohamed S, Shatilla Y, Zhang T (2019) CFD-based design and simulation of hydrocarbon ejector for cooling. Energy 167:346–358

    Google Scholar 

  90. Gagan J, Smierciew K, Butrymowicz D, Karwacki J (2014) Comparative study of turbulence models in application to gas ejectors. Int J Therm Sci 78:9–15

    Google Scholar 

  91. Zheng P, Li B, Qin J (2018) CFD simulation of two-phase ejector performance influenced by different operation conditions. Energy 155:1129–1145

    Google Scholar 

  92. Biferi G, Giacomelli F, Mazzelli F, Milazzo A (2016) CFD modelling of the condensation inside a supersonic ejector working with R134a. Energy Procedia 101:1232–1239

    Google Scholar 

  93. Bartosiewicz Y, Aidoun Z, Desevaux P, Mercadier Y (2005) Numerical and experimental investigations on supersonic ejectors. Int J Heat Fluid Flow 26(1):56–70

    Google Scholar 

  94. Hemidi A, Henry F, Leclaire S, Seynhaeve JM, Bartosiewicz Y (2009) CFD analysis of a supersonic air ejector. Part I: experimental validation of single-phase and two-phase operation. Appl Therm Eng 29(8–9):1523–1531

    Google Scholar 

  95. Del Valle JG, Jabardo JS, Ruiz FC, Alonso JSJ (2014) An experimental investigation of a R-134a ejector refrigeration system. Int J Refrig 46:105–113

    Google Scholar 

  96. Croquer S, Poncet S, Aidoun Z (2016) Turbulence modelling of a single-phase R134a supersonic ejector. Part 1: numerical benchmark. Int J Refrig 61:140–152

    Google Scholar 

  97. Del Valle JG, Sierra-Pallares J, Carrascal PG, Ruiz FC (2015) An experimental and computational study of the flow pattern in a refrigerant ejector. Validation of turbulence models and real-gas effects. Appl Therm Eng 89:795–811

    Google Scholar 

  98. Varga S, Soares J, Lima R, Oliveira AC (2017) On the selection of a turbulence model for the simulation of steam ejectors using CFD. Int J Low-Carbon Technol 12(3):233–243

    Google Scholar 

  99. Besagni G, Mereu R, Inzoli F (2015) CFD study of ejector flow behavior in a blast furnace gas galvanizing plant. J Therm Sci 24(1):58–66

    Google Scholar 

  100. Chandra VV, Ahmed MR (2014) Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors. Energy Convers Manage 79:377–386

    Google Scholar 

  101. Suvarnakuta N, Pianthong K, Sriveerakul T, Seehanam W (2020) Performance analysis of a two-stage ejector in an ejector refrigeration system using computational fluid dynamics. Eng Appl Comput Fluid Mech 14(1):669–682

    Google Scholar 

  102. Zhang C, Li Y and Zhang J, (2020), A developed CRMC design method and numerical modeling for the ejector component in the steam jet heat pumps. In Proceedings of the 11th international symposium on heating, ventilation and air conditioning (ISHVAC 2019): volume II: heating, ventilation, air conditioning and refrigeration system (p. 135). Springer Nature.

  103. Rao SM, Jagadeesh G (2015) Studies on the effects of varying secondary gas properties in a low entrainment ratio supersonic ejector. Appl Therm Eng 78:289–302

    Google Scholar 

  104. Ablwaifa (2006) also suggested that high gradient grid in the various region helps to achieve accureate numerical predications for shock phenomena and other complex flow features.

  105. Zhu Y, Jiang P (2014) Bypass ejector with an annular cavity in the nozzle wall to increase the entrainment: experimental and numerical validation. Energy 68:174–181

    Google Scholar 

  106. Zhu Y, Jiang P (2014) Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance. Int J Refrig 40:31–42

    Google Scholar 

  107. Desevaux P (2002) CFD modelling of shock train inside a supersonic ejector: validation against flow visualizations and pressure measurements in the case of zero-secondary flow. In Proceeding of the 10th international symposium on flow visualization kyoto, (2002) (pp. F-0259).

  108. Desevaux P, Marynowski T, Khan M (2006) CFD prediction of supersonic ejectors performance. Int J Turbo Jet Eng 23(3):173–182

    Google Scholar 

  109. Li H and Shen S (2004), Analysis of flow field in an ejector with steam as working fluid. In ASME pressure vessels and pi** conference (Vol. 46865, pp. 227–234).

  110. Desevaux P, Aeschbacher O (2002) Numerical and experimental flow visualizations of the mixing process inside an induced air ejector. Int J Turbo Jet Eng 19(1–2):71–78

    Google Scholar 

  111. Riffat SB, Everitt P (1999) Experimental and CFD modelling of an ejector system for vehicle air conditioning. J Inst Energy 72(491):41–47

    Google Scholar 

  112. Neve RS (1993) Computational fluid dynamics analysis of diffuser performance in gas-powered jet pumps. Int J Heat Fluid Flow 14(4):401–407

    Google Scholar 

  113. Desevaux P, Hostache G, Jacquet P (1994) Static pressure measurement along the centerline of an induced flow ejector. Exp Fluids 16(3):289–291

    Google Scholar 

  114. Alhussan K and Garris Jr C (2002), Non-steady three-dimensional flow field analysis in supersonic flow induction. In Fluids engineering division summer meeting (Vol. 36150, pp. 1075–1081).

  115. Mazzelli F, Milazzo A (2015) Performance analysis of a supersonic ejector cycle working with R245fa. Int J Refrig 49:79–92

    Google Scholar 

  116. Chen F, Liu CF, Yang JY (1994) Supersonic flow in the second-throat ejector-diffuser system. J Spacecr Rocket 31(1):123–129

    Google Scholar 

  117. Wang XD, Dong JL (2010) Numerical study on the performances of steam-jet vacuum pump at different operating conditions. Vacuum 84(11):1341–1346

    Google Scholar 

  118. Hart JH (2002). Supersonic ejector simulation and optimisation (Doctoral dissertation, University of Sheffield).

  119. Arbel A, Shklyar A, Hershgal D, Barak M, Sokolov M (2003) Ejector irreversibility characteristics. J Fluids Eng 125(1):121–129

    Google Scholar 

  120. Banasiak K, Palacz M, Hafner A, Buliński Z, Smołka J, Nowak AJ, Fic A (2014) A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: an irreversibility analysis. Int J Refrig 40:328–337

    Google Scholar 

  121. Khennich M, Galanis N, Sorin M (2016) Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems. Appl Energy 179:1020–1031

    Google Scholar 

  122. Guangming CHEN, Zhang H (2016) Theoretical analysis on impact of irreversibility on ejector performance. CIESC J 67(s2):78–86

    Google Scholar 

  123. Foroozesh F, Khoshnevis AB and Lakzian E (2019), Investigation on the effects of water steam ejector geometry in the refrigeration systems using entropy generation assessment. J Therm Anal Calorimetry, pp.1–13.

  124. Cizungu K, Groll M, Ling ZG (2005) Modelling and optimization of two-phase ejectors for cooling systems. Appl Therm Eng 25(13):1979–1994

    Google Scholar 

  125. Aly NH, Karameldin A, Shamloul MM (1999) Modelling and simulation of steam jet ejectors. Desalination 123(1):1–8

    Google Scholar 

  126. Eames IW, Aphornratana S, Sun DW (1995) The jet-pump cycle–a low cost refrigerator option powered by waste heat. Heat Recov Syst CHP 15(8):711–721

    Google Scholar 

  127. Godefroy J, Boukhanouf R, Riffat S (2007) Design, testing and mathematical modelling of a small-scale CHP and cooling system (small CHP-ejector trigeneration). Appl Therm Eng 27(1):68–77

    Google Scholar 

  128. Huang BJ, Chang JM (1999) Empirical correlation for ejector design. Int J Refrig 22(5):379–388

    Google Scholar 

  129. Rogdakis ED, Alexis GK (2000) Design and parametric investigation of an ejector in an air-conditioning system. Appl Therm Eng 20(2):213–226

    Google Scholar 

  130. Yu J, Chen H, Ren Y, Li Y (2006) A new ejector refrigeration system with an additional jet pump. Appl Therm Eng 26(2–3):312–319

    Google Scholar 

  131. Yu J, Li Y (2007) A theoretical study of a novel regenerative ejector refrigeration cycle. Int J Refrig 30(3):464–470

    Google Scholar 

  132. Yu J, Zhao H, Li Y (2008) Application of an ejector in autocascade refrigeration cycle for the performance improvement. Int J Refrig 31(2):279–286

    Google Scholar 

  133. Selvaraju A, Mani A (2004) Analysis of a vapour ejector refrigeration system with environment friendly refrigerants. Int J Therm Sci 43(9):915–921

    Google Scholar 

  134. Abdulateef JM, Sopian K, Alghoul MA, Sulaiman MY (2009) Review on solar-driven ejector refrigeration technologies. Renew Sustain Energy Rev 13(6–7):1338–1349

    Google Scholar 

  135. Chen J, Jarall S, Havtun H, Palm B (2015) A review on versatile ejector applications in refrigeration systems. Renew Sustain Energy Rev 49:67–90

    Google Scholar 

  136. Besagni G, Mereu R, Inzoli F (2016) Ejector refrigeration: a comprehensive review. Renew Sustain Energy Rev 53:373–407

    Google Scholar 

  137. Sun DW (1999) Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Convers Manage 40(8):873–884

    Google Scholar 

  138. Boumaraf L and Lallemand A (1999), Performance analysis of a jet cooling system using refrigerant mixtures; Performances d'une machine tritherme a ejecteur utilisant des melanges de fluides frigorigenes. Int J Refrig, 22.

  139. Dorantes R, Lallemand A (1995) Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures. Int J Refrig 18(1):21–30

    Google Scholar 

  140. Selvaraju A, Mani A (2004) Analysis of an ejector with environment friendly refrigerants. Appl Therm Eng 24(5–6):827–838

    Google Scholar 

  141. Zhang C, Lin J, Tan Y (2020) Parametric study and working fluid selection of the parallel type of organic Rankine cycle and ejector heat pump combined cycle. Sol Energy 205:487–495

    Google Scholar 

  142. Ding Z, Wang L, Zhao H, Zhang H, Wang C (2016) Numerical study and design of a two-stage ejector for subzero refrigeration. Appl Therm Eng 108:436–448

    Google Scholar 

  143. Singhal G, Rajesh R, Tyagi RK, Dawar AL, Subbarao PMV, Endo M (2006) Two-stage ejector-based pressure recovery system for small scale SCOIL. Exp Thermal Fluid Sci 30(5):415–426

    Google Scholar 

  144. Gamisans X, Sarrà M, Lafuente FJ (2002) Gas pollutants removal in a single-and two-stage ejector–venturi scrubber. J Hazard Mater 90(3):251–266

    Google Scholar 

  145. Jaruwongwittaya T, Chen G (2012) Application of two stage ejector cooling system in a bus. Energy Procedia 14:187–197

    Google Scholar 

  146. Kong F, Kim HD (2016) Optimization study of a two-stage ejector–diffuser system. Int J Heat Mass Transf 101:1151–1162

    Google Scholar 

  147. Chen H, Zhu J, Lu W (2018) Optimized selection of one-and two-stage ejectors under design and off-design conditions. Energy Convers Manage 173:743–752

    Google Scholar 

  148. Wang P, Ma H, Spitzenberger J, Abu-Heiba A, Nawaz K (2021) Thermal performance of an absorption-assisted two-stage ejector air-to-water heat pump. Energy Convers Manage 230:113761

    Google Scholar 

  149. Liu Y, Liu J, Yu J (2020) Theoretical analysis on a novel two-stage compression transcritical CO2 dual-evaporator refrigeration cycle with an ejector. Int J Refrig 119:268–275

    Google Scholar 

  150. Askalany A, Ali ES, Mohammed RH (2020) A novel cycle for adsorption desalination system with two stages-ejector for higher water production and efficiency. Desalination 496:114753

    Google Scholar 

  151. Manjili FE, Yavari MA (2012) Performance of a new two-stage multi-intercooling transcritical CO2 ejector refrigeration cycle. Appl Therm Eng 40:202–209

    Google Scholar 

  152. Bai T, Lu Y, Yan G and Yu J (2020). Performance analysis of an ejector enhanced two-stage auto-cascade refrigeration cycle for low temperature freezer. J Therm Sci.

  153. Li Y, Yu J (2019) Thermodynamic analysis of a modified ejector-expansion refrigeration cycle with hot vapor bypass. J Therm Sci 28(4):695–704

    Google Scholar 

  154. Han Q, Liu C, Xue H, Zhang H, Sun W, Sun W and Jiaa L, (2023). Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy. Energy, p.128376.

  155. Yan J, Gao H, Wang Z (2023) Three-dimensional numerical study on the effect of radius of the equal-area mixing chamber on auxiliary entraining of the two-stage ejector. Case Stud Therm Eng 51:103528

    Google Scholar 

  156. He X et al (2023) Performance analysis of a two-stage ejector refrigeration system using refrigerant R1234yf. Entropy 25(4):424

    Google Scholar 

  157. Sun DW (1996) Variable geometry ejectors and their applications in ejector refrigeration systems. Energy 21(10):919–929

    Google Scholar 

  158. Kim H, Lee J, Setoguchi T, Matsuo S (2006) Computational analysis of a variable ejector flow. J Therm Sci 15(2):140–144

    Google Scholar 

  159. Ma X, Zhang W, Omer S, Riffat S (2010) Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Appl Therm Eng 30:1320–1325

    Google Scholar 

  160. Dennis M, Garzoli K (2011) Use of variable geometry ejector with cold store to achieve high solar fraction for solar cooling. Int J Refrig 34(7):1626–1632

    Google Scholar 

  161. Gutierrez A, Léon N (2014) Conceptual development and CFD evaluation of a high efficiency–variable geometry ejector for use in refrigeration applications. Energy Procedia 57:2544–2553

    Google Scholar 

  162. Worall M (2001), An investigation of a jet-pump (ice) storage system powered by low-grade heat, PhD thesis, University of Nottingham.

  163. Seehanam W, Pianthong K, Behnia M, Chunnanond K, Aphornratana S (2007) Simulation on performance of cpm and crmc steam ejectors using CFD technique. Ubon Ratchatany University, Thailand

    Google Scholar 

  164. Eames IW, Ablwaifa AE, Petrenko V (2007) Results of an experimental study of an advanced jet-pump refrigerator operating with r245fa. Appl Therm Eng 27(17):2833–2840

    Google Scholar 

  165. Alsafi M (2017), Constant rate of momentum change ejector: simulation, experiments and flow visualisation (Doctoral dissertation, University of Southern Queensland).

  166. Kitrattana B, Aphornratana S, Thongtip T, Ruangtrakoon N (2017) Comparison of traditional and CRMC ejector performance used in a steam ejector refrigeration. Energy Procedia 138:476–481

    Google Scholar 

  167. Unal S, Erdinç MT, Akgun H, Bilgili M (2023) Effects of alternative refrigerants on the ejector dimensions for single and dual ejectors enhanced bus air conditioning system. Int Commun Heat Mass Transfer 143:106685

    Google Scholar 

  168. Pang J, Ge Z, Zhang Y and Du X, (2023). Comparative designs and optimizations of the steam ejector for a CHP system. Appl Therm Eng, 120345.

  169. Wang J et al (2023) Optimization of a hybrid ejector-vapor compression refrigeration system using an adaptive differential evolution algorithm. Energies 16(9):1471

    Google Scholar 

  170. Li Z et al (2023) Experimental study on the performance of a supersonic ejector with different mixing sections. Exp Thermal Fluid Sci 143:110937

    Google Scholar 

  171. Zhang T, Wang Z, Huang W, Ingham D, Ma L, Porkashanian M (2020) An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission. Energy 193:116709

    Google Scholar 

  172. Sun DW, Eames IW (1996) Performance characteristics of HCFC-123 ejector refrigeration cycles. Int J Energy Res 20(10):871–885

    Google Scholar 

  173. Selvaraju A, Mani A (2006) Experimental investigation on R134a vapour ejector refrigeration system. Int J Refrig 29(7):1160–1166

    Google Scholar 

  174. Alexis GK, Karayiannis EK (2005) A solar ejector cooling system using refrigerant R134a in the Athens area. Renew Energy 30(9):1457–1469

    Google Scholar 

  175. Butrymowicz D, Smierciew K, Karwacki J, Gagan J (2014) Experimental investigations of low-temperature driven ejection refrigeration cycle operating with isobutane. Int J Refrig 39:196–209

    Google Scholar 

  176. Ruangtrakoon N, Aphornratana S (2014) Development and performance of steam ejector refrigeration system operated in real application in Thailand. Int J Refrig 48:142–152

    Google Scholar 

  177. Chandra VV, Ahmed MR (2014) Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors. Energy Convers Manag 79:377–386

    Google Scholar 

  178. Nguyen VM, Riffat SB, Doherty PS (2001) Development of a solar-powered passive ejector cooling system. Appl Therm Eng 21(2):157–168

    Google Scholar 

  179. Thongtip T, Aphornratana S (2018) Development and performance of a heat driven R141b ejector air conditioner: application in hot climate country. Energy 160:556–572

    Google Scholar 

  180. Chen LT (1978) A heat driven mobile refrigeration cycle analysis. Energy Convers 18(1):25–29

    Google Scholar 

  181. Salim M (2004) Thermally activated mobile ejector refrigeration system analysis. Proc Inst Mech Eng, Part D: J Automob Eng 218(9):1055–1061

    Google Scholar 

  182. Wang L, Cai W, Zhao H, Lin C, Yan J (2016) Experimentation and cycle performance prediction of hybrid A/C system using automobile exhaust waste heat. Appl Therm Eng 94:314–323

    Google Scholar 

  183. Choutapalli IM, Krothapalli A, Alkislar MB (2012) Pulsed-jet ejector thrust augumentor characteristics. J Propul Power 28(2):293–306

    Google Scholar 

  184. Lijo V, Kim HD, Matsuo S, Setoguchi T (2012) A study of the supersonic ejector–diffuser system with an inlet orifice. Aerosp Sci Technol 23(1):321–329

    Google Scholar 

  185. Shan Y, Zhang JZ, Ren XW (2018) Numerical modeling on pum** performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage. Energy 158:216–227

    Google Scholar 

  186. Choi Y, Soh W (1990) Computational analysis of the flow field of a two-dimensional ejector Nozzle. NASA, Washington DC USA

    Google Scholar 

  187. Gauthier JED, Birk AM (1997), Optimization of an ejector using computational fluid dynamics. In Proceedings of the ASME fluids engineering division summer meeting, FEDSM97–3416, Vancouver, BC, Canada, 22–26 June.

  188. Wang JJ, Chen F (1996) On the start condition of a second-throat ejector-diffuser. Aeronaut J 100(998):321–326

    Google Scholar 

  189. Desevaux P, Lanzetta F (2004) Computational fluid dynamic modelling of pseudoshock inside a zero-secondary flow ejector. AIAA J 42(7):1480–1483

    Google Scholar 

  190. Dvorak V (2010), Shape optimization of supersonic ejector for supersonic wind tunnel. Appl Comput Mech, 4(1).

  191. Fabri J and Siestrunck R (1958). Supersonic air ejectors. In Advances in applied mechanics (Vol. 5, pp. 1–34). Elsevier.

  192. Matsuo K, Sasaguchi K, Tasaki K, Mochizuki H (1981) Investigation of supersonic air ejectors: part 1. Performance in the case of zero-secondary flow. Bull JSME 24(198):2090–2097

    Google Scholar 

  193. Al-Ansary HA (2007), The use of ejector refrigeration systems for turbine inlet air cooling: a thermodynamic and CFD study. In Energy sustainability (Vol. 47977, pp. 231–238).

  194. Petrenko VO, Huang BJ and Shestopalov KO (2011). Innovative solar and waste heat driven ejector air conditioners and chillers. In Proceedings of the 2011 2nd international conference on environmental science and technology ipcbee (international proceedings of chemical, biological and environmental engineering).

  195. Daubert-Deleris I, Hoffmann PA, Fonade C, Maranges C (2006) Hydrodynamic and mass transfer performance of a new aero-ejector with its application to VOC abatement. Chem Eng Sci 61(15):4982–4993

    Google Scholar 

  196. Fahmy A, Mewes D, Ohlrogge K (2002) On the integration of jet ejectors into hybrid dehydration processes. J Membr Sci 196(1):79–84

    Google Scholar 

  197. Hwang JJ (2014) Passive hydrogen recovery schemes using a vacuum ejector in a proton exchange membrane fuel cell system. J Power Sources 247:256–263. https://doi.org/10.1016/j.jpowsour.2013.08.126

    Article  Google Scholar 

  198. Kuo JK, Jiang WZ, Li CH, Hsu TH (2020) Numerical investigation into hydrogen supply stability and IV performance of PEM fuel cell system with passive Venturi ejector. Appl Therm Eng 169:114908

    Google Scholar 

  199. Yan J, Cai W, Zhao L, Li Y, Lin C (2013) Performance evaluation of a combined ejector-vapor compression cycle. Renewab Energy 55:331–337

    Google Scholar 

  200. Petrovic A, Jovanovic MZ, Genic S, Bugaric U, Delibasic B (2018) Evaluating performances of 1-D models to predict variable area supersonic gas ejector performances. Energy 163:270–289

    Google Scholar 

  201. Alasfour FN, Darwish MA, Amer AB (2005) Thermal analysis of ME—TVC+ MEE desalination systems. Desalination 174(1):39–61

    Google Scholar 

  202. Sharifi N, Boroomand M, Sharifi M (2013) Numerical assessment of steam nucleation on thermodynamic performance of steam ejectors. Appl Therm Eng 52(2):449–459

    Google Scholar 

  203. Sharifi N, Boroomand M (2013) An investigation of thermo-compressor design by analysis and experiment: part 2. Development of design method by using comprehensive characteristic curves. Energy Convers Manage 69:228–237

    Google Scholar 

  204. Samake O, Galanis N, Sorin M (2014) Thermodynamic study of multi-effect thermal vapour-compression desalination systems. Energy 72:69–79

    Google Scholar 

  205. Samake O, Galanis N, Sorin M (2018) Thermo-economic analysis of a multiple-effect desalination system with ejector vapour compression. Energy 144:1037–1051

    Google Scholar 

  206. Yu W, Xu Y, Wang H, Ge Z, Wang J, Zhu D, **a Y (2020) Thermodynamic and thermoeconomic performance analyses and optimization of a novel power and cooling cogeneration system fueled by low-grade waste heat. Appl Therm Eng 179:115667

    Google Scholar 

  207. Ustaoglu A, Kursuncu B, Alptekin M, Gok MS (2020) Performance optimization and parametric evaluation of the cascade vapor compression refrigeration cycle using Taguchi and ANOVA methods. Appl Therm Eng 180:115816

    Google Scholar 

  208. Foroozesh F, Khoshnevis AB, Lakzian E (2020) Improvement of the wet steam ejector performance in a refrigeration cycle via changing the ejector geometry by a novel EEC (entropy generation, entrainment ratio, and coefficient of performance) method. Int J Refrig 110:248–261

    Google Scholar 

  209. Al-Hamed KHM, Dincer I (2019) Investigation of a concentrated solar-geothermal integrated system with a combined ejector-absorption refrigeration cycle for a small community. Int J Refrig 106:407–426

    Google Scholar 

  210. Mofrad KG, Zandi S, Salehi G, Manesh MHK (2020) 4E analyses and multi-objective optimization of cascade refrigeration cycles with heat recovery system. Therm Sci Eng Progress 19:100613

    Google Scholar 

  211. Pietrasanta AM, Mussati SF, Aguirre PA, Morosuk T and Mussati MC (2021) Optimization of a multi-generation power, desalination, refrigeration and heating system. Energy, 121737.

  212. Jeon Y, Kim S, Lee SH, Chung HJ, Kim Y (2020) Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants. Appl Energy 278:115715

    Google Scholar 

  213. Pabon JJ, Khosravi A, Belman-Flores JM, Machado L, Revellin R (2020) Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: a decade of research. Int J Refrig 118:104–113

    Google Scholar 

  214. Alexis GK (2004) Estimation of ejector’s main cross sections in steam-ejector refrigeration system. Appl Therm Eng 24(17–18):2657–2663

    Google Scholar 

  215. Bellos E, Tzivanidis C (2018) Parametric analysis and optimization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors. Energy Convers Manage 168:329–342

    Google Scholar 

  216. Galindo J, Dolz V, García-Cuevas LM, Ponce-Mora A (2020) Numerical evaluation of a solar-assisted jet-ejector refrigeration system: screening of environmentally friendly refrigerants. Energy Convers Manage 210:112681

    Google Scholar 

  217. Liu G, Wang Z, Zhao H and Abdulwahid AHA (2021), R744 ejector simulation based on homogeneous equilibrium model and its application in trans-critical refrigeration system. Appl Therm Eng, 117791.

  218. Huang Y, Jiang P, Zhu Y (2020) Experimental and modeling studies of thermally driven subcritical and transcritical ejector refrigeration systems. Energy Convers Manage 224:113361

    Google Scholar 

  219. Yang M, Li X, Wang L, Yuan J, Wang Z and Liang K (2020), Energy and exergy analysis of a cooling/power cogeneration ejector refrigeration system. J Thermal Sci, pp.1–15.

  220. Foroozesh F, Khoshnevis AB, Lakzian E (2020) Investigation on the effects of water steam ejector geometry in the refrigeration systems using entropy generation assessment. J Therm Anal Calorim 141(4):1399–1411

    Google Scholar 

  221. Nemati A, Mohseni R, Yari M (2018) A comprehensive comparison between CO2 and Ethane as a refrigerant in a two-stage ejector-expansion transcritical refrigeration cycle integrated with an organic Rankine cycle (ORC). J Supercrit Fluids 133:494–502

    Google Scholar 

  222. Akbari H, Sorin M (2020) Optimal component-scale design of ejector refrigeration systems based on equivalent temperature. Energy Convers Manage 209:112627

    Google Scholar 

  223. Thongtip T, Aphornratana S (2021) Impact of primary nozzle area ratio on the performance of ejector refrigeration system. Appl Therm Eng 188:116523

    Google Scholar 

  224. Wang L, Liu J, Zou T, Du J, Jia F (2018) Auto-tuning ejector for refrigeration system. Energy 161:536–543

    Google Scholar 

  225. Yan J, Chen G, Liu C, Tang L, Chen Q (2017) Experimental investigations on a R134a ejector applied in a refrigeration system. Appl Therm Eng 110:1061–1065

    Google Scholar 

  226. Wang Y, Wang P, Wang L, Gong Y, Huang B (2023) The influence of the lobed ejector on the horizontal axial tidal turbine and flow characteristic analysis. Ocean Eng 288:116020

    Google Scholar 

  227. Wang L et al (2023) Design and optimization of a high-performance ejector for refrigeration applications. Int J Refrig 139:253–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Kumar Yadav.

Additional information

Technical Editor: Guilherme Ribeiro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Yadav, S.K., Kumar, V. et al. A comprehensive exploration of ejector design, operational factors, performance metrics, and practical applications. J Braz. Soc. Mech. Sci. Eng. 46, 39 (2024). https://doi.org/10.1007/s40430-023-04618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04618-8

Keywords

Navigation