Log in

Analysis of thermal comfort in a planetarium through CFD simulations

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work aims to obtain the velocity and temperature fields inside the Museum of the Universe (Planetarium of the Rio de Janeiro city) and the predicted mean vote and predicted percentage dissatisfied indices of thermal comfort for three specific times in autumn of 2014. The numerical analysis was developed using computational fluid dynamics (CFD) techniques, using the commercial software ANSYS Fluent. Experimental data and information from on-site surveys were used as input for the CFD simulation. The boundary conditions were no slip on the walls and prescribed velocity on the air-conditioning diffusers. Data for temperature boundary conditions came from previous experimental work. For the envelope, a prescribed temperature except for the north face of the glass cover with prescribed heat flow was assumed. The prescribed heat flow was also inserted on the ground and first floors, assuming a uniform distribution of heat produced by the visitors. The mesh test was performed for the temperature in a vertical line in a central position. Comparing the numerical results with experimental data, for the worst case, the average of temperature absolute differences at 13 points was 0.8 °C with a root-mean-square error of 4.75%. The results demonstrated the ability of the air-conditioning system to develop thermal comfort between the ground floor and the ceiling of the second floor, even when the latter is turned off, aided in this condition by the thermal stratification of the air observed in the dome region, caused by local stagnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energy Build 256:111747. https://doi.org/10.1016/j.enbuild.2021.111747. (ISSN 0378-7788)

    Article  Google Scholar 

  2. Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:2542–5293. https://doi.org/10.1016/j.mtphys.2021.100465

    Article  Google Scholar 

  3. ASHRAE-55, Thermal Environmental Conditions for Human Occupancy, ASHRAE Standard, 2017

  4. Wu J, Liu C, Wang H (2022) Analysis of spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities based on local climate zones. Build Environ 207:108568. https://doi.org/10.1016/j.buildenv.2021.108568

    Article  Google Scholar 

  5. Mohammad P, Aghlmand S, Fadaei A, Gachkar S, Gachkar D, Karimi A (2021) Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate 40:100993. https://doi.org/10.1016/j.uclim.2021.100993. (ISSN 2212-0955)

    Article  Google Scholar 

  6. ABNT 16401:2 (2008) Instalações de ar condicionado - sistemas centrais e unitários - parte 2 - parâmetros de conforto térmico, Associação Brasileira de Normas Técnicas

  7. Fanger PO (1973) Assessment of man’s thermal comfort in practice. Br J Ind Med 30:313–324. https://doi.org/10.1136/oem.30.4.313

    Article  Google Scholar 

  8. Hoof J (2018) Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air 18:182–201. https://doi.org/10.1111/j.1600-0668.2007.00516.x

    Article  Google Scholar 

  9. Broday EE, Ruivo CR, Silva MG (2021) The use of Monte Carlo method to assess the uncertainty of thermal comfort indices PMV and PPD: benefits of using a measuring set with an operative temperature probe. J Build Eng 35:101961. https://doi.org/10.1016/j.jobe.2020.101961. (ISSN 2352-7102)

    Article  Google Scholar 

  10. Cheung T, Schiavon S, Parkinson T, Li P, Brager G (2019) Analysis of the accuracy on PMV – PPD model using the ASHRAE global thermal comfort database II. Build Enviro 153:205–217. https://doi.org/10.1016/j.buildenv.2019.01.055. (ISSN 0360-1323)

    Article  Google Scholar 

  11. Losi G, Bonzanini A, Aquino A, Poesio P (2021) Analysis of thermal comfort in a football stadium designed for hot and humid climates by CFD. J Build Eng 33:101599. https://doi.org/10.1016/j.jobe.2020.101599. (ISSN 2352-7102)

    Article  Google Scholar 

  12. Laouadi A (2022) A new general formulation for the PMV thermal comfort index. Buildings 12:1572. https://doi.org/10.3390/buildings12101572

    Article  Google Scholar 

  13. Walls W, Parker N, Walliss J (2015) Designing with thermal comfort indices in outdoor sites. In: Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association, Vol. 2015, The Architectural Science Association and The University of Melbourne, pp 1117–1128

  14. González-Torres M, Pérez-Lombard L, Coronel JF, Maestre IR, Yan D (2022) A review on buildings energy information: trends, end-uses, fuels and drivers. Energy Rep 8:626–637. https://doi.org/10.1016/j.egyr.2021.11.280

    Article  Google Scholar 

  15. Kanaan M (2019) CFD optimization of return air ratio and use of upper room UVGI in combined HVAC and heat recovery system. Case Stud Thermal Eng 15:100535. https://doi.org/10.1016/j.csite.2019.100535. (ISSN 2214-157X)

    Article  Google Scholar 

  16. Ma N, Aviv D, Guo H, Braham WW (2021) Measuring the right factors: a review of variables and models for thermal comfort and indoor air quality. Renew Sustain Energy Rev 135:110436. https://doi.org/10.1016/j.rser.2020.110436. (ISSN1364-0321)

    Article  Google Scholar 

  17. Molina AM, Ausina IT, Cho S, Vivancos JL (2016) Energy efficiency and thermal comfort in historic buildings: a review. Renew Sustain Energy Rev 61:70–85. https://doi.org/10.1016/j.rser.2016.03.018. (ISSN 1364-0321)

    Article  Google Scholar 

  18. Yu J, Kang Y, Zhai Z (2020) Advances in research for underground buildings: energy, thermal comfort and indoor air quality. Energy Build 215:109916. https://doi.org/10.1016/j.enbuild.2020.109916. (ISSN 0378-7788)

    Article  Google Scholar 

  19. Yüksel A, Arıcı M, Krajčík M, Civan M, Karabay H (2021) A review on thermal comfort, indoor air quality and energy consumption in temples. J Build Eng 35:102013. https://doi.org/10.1016/j.jobe.2020.102013. (ISSN 2352-7102)

    Article  Google Scholar 

  20. Chen Z, **n J, Liu P (2020) Air quality and thermal comfort analysis of kitchen environment with CFD simulation and experimental calibration. Build Environ 172:106691. https://doi.org/10.1016/j.buildenv.2020.106691. (ISSN 0360-1323)

    Article  Google Scholar 

  21. Naboni E, Lee DSH, Fabbri K (2017) Thermal comfort-CFD maps for architectural interior design. Procedia Eng 180:110–117. https://doi.org/10.1016/j.proeng.2017.04.170. (ISSN 1877-7058)

    Article  Google Scholar 

  22. Cuce E, Sher F, Sadiq H, Cuce PM, Guclu T, Besir AB (2019) Sustainable ventilation strategies in buildings: CFD research. Sustain Energy Technol Assess 36:100540. https://doi.org/10.1016/j.seta.2019.100540. (ISSN 2213-1388)

    Article  Google Scholar 

  23. Buratti C, Palladino D, Moretti E (2017) Prediction of indoor conditions and thermal comfort using CFD simulations: a case study based on experimental data. Energy Procedia 126:115–122. https://doi.org/10.1016/j.egypro.2017.08.130. (ISSN 1876-6102)

    Article  Google Scholar 

  24. Papakonstantinou KA, Kiranoudis CT, Markatos NC (2000) Computational analysis of thermal comfort: the case of the archaeological museum of Athens. Appl Math Modell 24(7):477–494. https://doi.org/10.1016/S0307-904X(99)00049-9. (ISSN 0307-904X)

    Article  MATH  Google Scholar 

  25. Vaseghi M, Fazel M, Ekhlassi A (2020) Numerical investigation of solar radiation effect on passive and active heating and cooling system of a concept museum building. Thermal Sci Eng Prog 19:100582. https://doi.org/10.1016/j.tsep.2020.100582. (ISSN 2451-9049)

    Article  Google Scholar 

  26. Stamou AI, Katsiris I, Schaelin A (2008) Evaluation of thermal comfort in galatsi arena of the olympics “Athens 2004” using a CFD model. Appl Thermal Eng 28(10):1359–4311. https://doi.org/10.1016/j.applthermaleng.2007.07.020. (ISSN 1359-4311)

    Article  Google Scholar 

  27. Nada SA, El-Batsh HM, Elattar HF, Ali NM (2016) CFD investigation of airflow pattern, temperature distribution and thermal comfort of UFAD system for theater buildings applications. J Build Eng 6:274–300. https://doi.org/10.1016/j.jobe.2016.04.008. (ISSN 2352-7102)

    Article  Google Scholar 

  28. Kavgic M, Mumovic D, Stevanovic Z, Young A (2008) Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre. Energy Build 40(7):1334–1343. https://doi.org/10.1016/j.enbuild.2007.12.002. (ISSN 0378-7788)

    Article  Google Scholar 

  29. Charai M, Mezrhab A, Moga L (2022) A structural wall incorporating biosourced earth for summer thermal comfort improvement: hygrothermal characterization and building simulation using calibrated PMV-PPD model. Build Environ 212:108842. https://doi.org/10.1016/j.buildenv.2022.108842. (ISSN 0360-1323)

    Article  Google Scholar 

  30. Hussain S, Oosthuizen PH, Kalendar A (2012) Evaluation of various turbulence models for the prediction of the airflow and temperature distributions in atria. Energy Build 48:18–28. https://doi.org/10.1016/j.enbuild.2012.01.004. (ISSN 0378-7788)

    Article  Google Scholar 

  31. Oosthuizen P, Lightstone M (2009) Numerical analysis of the flow and temperature distributions in an atrium. In: proceedings of the international conference on computational methods for energy engineering and environment-ICCM3E-20-22

  32. Rundle CA, Lightstone MF, Oosthuizen P, Karava P, Mouriki E (2011) Validation of computational fluid dynamics simulations for atria geometries. Build Environ 46(7):1343–1353. https://doi.org/10.1016/j.buildenv.2010.12.019. (ISSN0360-1323)

    Article  Google Scholar 

  33. Moosavi L, Ghafar N, Mahyuddin N (2016) Investigation of thermal performance for atria: a method overview. MATECWeb of Conf 66:00029. https://doi.org/10.1051/matecconf/20166600029

    Article  Google Scholar 

  34. Planetary foundation - http://www.planetariodorio.com.br, Accessed on 23 Sep 2022

  35. Massarani L, Rocha JN, Scalfi G, Silveira Y, Cruz W, Guedes LLS (2021) Families visit the museum: a study on family interactions and conversations at the museum of the universe - Rio de Janeiro (Brazil). Front Edu. https://doi.org/10.3389/feduc.2021.669467

    Article  Google Scholar 

  36. D’Agostino D, Esposito F, Greco A, Masselli C, Minichiello F (2020) The energy performances of a ground-to-air heat exchanger: a comparison among koppen climatic areas. Energies 13(11):2895. https://doi.org/10.3390/en13112895

    Article  Google Scholar 

  37. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  38. Climate data (2021) URL https://pt.climate-data.org/america-do-sul/brasil/rio-de-janeiro/rio-de-janeiro-853/

  39. Hinze JO (1975) Turbulence. McGraw-Hill Publishing Co, New York

    Google Scholar 

  40. Alfonsi G (2009) Reynolds-averaged navier-stokes equations for turbulence modeling. Appl Mech Rev. https://doi.org/10.1115/1.3124648

    Article  Google Scholar 

  41. Arun M, Tulapurkara E (2005) Computation of turbulent flow inside an enclosure with central partition. Progress Comput Fluid Dyn Int J 5:455–465. https://doi.org/10.1504/PCFD.2005.007681

    Article  MATH  Google Scholar 

  42. Kuznik F, Rusaouën G, Brau J (2007) Experimental and numerical study of a full scale ventilated enclosure: comparison of four two equations closure turbulence models. Build Environ 42(3):1043–1053. https://doi.org/10.1016/j.buildenv.2005.11.024. (ISSN 0360-1323)

    Article  Google Scholar 

  43. Wilcox D (2006) Turbulence Modeling for CFD, Volume 3, DCW Industries

  44. Chen Q (1996) Prediction of room air motion by Reynolds-stress models. Build Environ 13(3):233–244. https://doi.org/10.1016/0360-1323(95)00049-6. (ISSN 0360-1323)

    Article  MathSciNet  Google Scholar 

  45. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  46. Cook MJ, Lomas KJ (1998) Buoyancy-driven displacement ventilation flows: evaluation of two eddy viscosity turbulence models for prediction. Build Serv Eng Res Technol 19(1):15–21. https://doi.org/10.1177/014362449801900103

    Article  Google Scholar 

  47. Jones PJ, Whittle GE (1992) Computational fluid dynamics for building air flow prediction—current status and capabilities. Build Environ 27(3):321–338. https://doi.org/10.1016/0360-1323(92)90033-L. (ISSN 0360-1323)

    Article  Google Scholar 

  48. Leenknegt S, Wagemakers R, Bosschaerts W, Saelens D (2013) Numerical study of convection during night cooling and the implications for convection modeling in building energy simulation models. Energy Build 64:41–52. https://doi.org/10.1016/j.enbuild.2013.04.012. (ISSN 0378-7788)

    Article  Google Scholar 

  49. EnergyPlus (2012) Engineering reference: the reference to energyplus calculations, Ernest Orlando Lawrence Berkeley National Laboratory: Berkeley, CA, USA

  50. Costa Filho MAF, et al. (2015) Experimental evaluation of thermal behavior of the Rio de Janeiro`s planetarium. In: international congress of mechanical engineering 23rd

  51. Castro AP (2021) Análise do conforto térmico do museu do universo (planetário da cidade do Rio de Janeiro). M.sc. Dissertation, Universidade do Estado do Rio de Janeiro, Brasil

  52. Lin Z, Chow TT, Tsang CF, Fong KF, Chan LS (2005) CFD study on effect of the air supply location on the performance of the displacement ventilation system. Build Environ 40(8):1051–1067. https://doi.org/10.1016/j.buildenv.2004.09.003. (ISSN 0360-1323)

    Article  Google Scholar 

  53. Ghani S, Mahgoub A, Bakochristou F et al (2021) Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. J Build Eng 40:102378. https://doi.org/10.1016/j.jobe.2021.102378

    Article  Google Scholar 

  54. Souza IC (2011) Simulação do escoamento de ar no auditório da FEUP. Dissertação (Mestrado), Faculdade de Engenharia da Universidade do Porto-FEUP

  55. Nielsen PV (ed), Allard F, Awbi HB, Davidson L, Schalin A (2007). Computational Fluid Dynamics in Ventilation Desing, Rehva ed

  56. Shi L et al (2022) CFD simulations of wind-driven rain on typical football stadium configurations in China’s hot-summer and cold-winter zone. Build Environ. https://doi.org/10.1016/j.buildenv.2022.109598

    Article  Google Scholar 

  57. Ji Y, Cook MJ, Hanby V (2007) CFD modelling of natural displacement ventilation in an enclosure connected to an atrium. Build Environ. https://doi.org/10.1016/j.buildenv.2005.11.002

    Article  Google Scholar 

  58. ISO 7730 (2005) Ergonomics of the thermal environment - analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The experimental analysis was supported by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Patrocinio de Castro.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Technical Editor: Guilherme Ribeiro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, A.P., da Fonseca Costa Filho, M.A., Maia, C.B. et al. Analysis of thermal comfort in a planetarium through CFD simulations. J Braz. Soc. Mech. Sci. Eng. 45, 569 (2023). https://doi.org/10.1007/s40430-023-04482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04482-6

Keywords

Navigation