Log in

Well-posedness and energy decay for Bresse system with microtemperatures effects in the presence of delay

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This paper focuses on studying the Bresse system with the effects of microtemperature and delay term. Our objective is to establish the well-posedness of the system by using the theory of semigroups. Additionally, we provide a result regarding the exponential decay of solutions. Specifically, utilizing the energy method, we prove that the dissipation caused by the microtemperature is sufficiently strong to exponentially stabilize the system when the speed of wave propagation are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Adjemi, S., Berkane, A., Zitouni, S., Bechouat, T.: Exponential decay and numerical solution of nonlinear Bresse–Timoshenko system with second sound. J. Thermal Stress. 45(2), 154–170 (2022). https://doi.org/10.1080/01495739.2022.2030838

    Article  Google Scholar 

  2. Afilal, M., Guesmia, A., Soufyane, A.: New stability results for a linear thermoelastic Bresse system with second sound. Appl. Math. Optim. 8383(2), 699–738 (2021). https://doi.org/10.1007/s00245-019-09560-7

    Article  MathSciNet  Google Scholar 

  3. Akil, M., Badawi, H., Nicaise, S., Wehbe, A.: On the Stability of Bresse system with one discontinuous local internal Kelvin-Voigt dam** on the axial force. Zeitschrift fur angewandte Mathematik und Physik 72(3), 126 (2021). https://doi.org/10.1007/s00033-021-01558-y

    Article  MathSciNet  Google Scholar 

  4. Akil, M., Badawi, H.: The effects of the physical coefficients of Bresse system with one discontinuous local viscous dam** in the longitudinal displacement. Evol. Equ. Control Theory 11(6), 1903–1928 (2021). https://doi.org/10.3934/eect.2022004

    Article  Google Scholar 

  5. Alabau-Boussouira, F., Muñoz-Rivera, J.E., Almeida-Júnior, D.S.: Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 374(2), 481–498 (2011). https://doi.org/10.1016/j.jmaa.2010.07.046

    Article  MathSciNet  Google Scholar 

  6. Apalara, T.A.: On the stability of porous-elastic system with microtemperatures. J. Thermal Stress. 42(2), 265–478 (2019). https://doi.org/10.1080/01495739.2018.1486688

    Article  Google Scholar 

  7. Badawi, H., Alsayed, H.: Polynomial stability of theormoelastic Timoshenko system with Non-global time-delayed cattaneo’s Law (2023). https://doi.org/10.48550/ar**v.2308.02930

  8. Benaissa, A., Miloudi, M., Mokhtari, M.: Global existence and energy decay of solutions to a Bresse system with delay terms. Comment. Math. Univ. Carolin. 56(2), 169–186 (2015). https://doi.org/10.14712/1213-7243.2015.116

    Article  MathSciNet  Google Scholar 

  9. Bresse, J.A.C.: Cours de Méchanique Appliquée. Mallet Bachelier, Paris (1859)

    Google Scholar 

  10. Casas, P.S., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43(1–2), 33–47 (2005). https://doi.org/10.1016/J.IJENGSCI.2004.09.004

    Article  MathSciNet  Google Scholar 

  11. Datko, R., Lagnese, J., Polis, M.P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control. Optim. 24(1), 152 (1986). https://doi.org/10.1137/0324007

    Article  MathSciNet  Google Scholar 

  12. Djellali, F., Apalara, T.A., Saifia, O.: New exponential stability result for thermoelastic laminated beams with structural dam** and second sound. Acta Appl. Math. 184(1), 12 (2023). https://doi.org/10.1007/s10440-023-00569-3

    Article  MathSciNet  Google Scholar 

  13. Gang, L.I., Yue, L.U.A.N., Wenjun, L.I.U.: Well-posedness and exponential stability of a thermoelastic-Bresse system with second sound and delay. Hacet. J. Math. Stat. 49(2), 523–538 (2019). https://doi.org/10.15672/hujms.568332

    Article  MathSciNet  Google Scholar 

  14. Han, Z.J., Xu, G.Q.: Spectral analysis and stability of thermoelastic Bresse system with secound sound and boundary viscoelastic dam**. Math. Methods Appl. Sci. 38(1), 94–112 (2013). https://doi.org/10.1002/mma.3052

    Article  Google Scholar 

  15. Keddi, A.A., Apalara, T.A., Messaoudi, S.A.: Exponential and polynomial decay in a thermoelastic-Bresse system with second sound. Appl. Math. Optim. 77(2), 315–341 (2018). https://doi.org/10.1007/s00245-016-9376-y

    Article  MathSciNet  Google Scholar 

  16. Khaled, Z., Djamel, O., Choucha, A.: Stability for thermo-elastic Bresse system of second sound with past history and delay term. Int. J. Modell. Identif. Control 36(4), 315–328 (2021). https://doi.org/10.1504/IJMIC.2020.10040953

    Article  Google Scholar 

  17. Lagnese, J.E.: Control of wave processes with distributed controls supported on a subregion. SIAM. J. Control. Optim. 21(1), 68–85 (1983). https://doi.org/10.1137/0321004

    Article  MathSciNet  Google Scholar 

  18. Lagnese, J.E., Leugering, G., Schmidt E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems and Control: Foundations and Applications. Birkhauser, Boston (1994)

  19. Lesan, D.I.: A theory of thermoelastic materials with voids. Acta. Mech. 60(1), 67–89 (1986). https://doi.org/10.1007/BF01302942

    Article  Google Scholar 

  20. Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60(1), 54–69 (2009). https://doi.org/10.1007/s00033-008-6122-6

    Article  MathSciNet  Google Scholar 

  21. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006). https://doi.org/10.1137/060648891

    Article  MathSciNet  Google Scholar 

  22. Nicaise, A.S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integr. Equ. 21(9–10), 935–958 (2008). https://doi.org/10.57262/die/1356038593

    Article  MathSciNet  Google Scholar 

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. p 44, Springer (1983)

  24. Santos, M.L., Dilberto, D.A., Almeida, J.: Numerical exponential decay to dissipative Bresse system. J. Appl. Math. 2010(1), 1–17 (2010). https://doi.org/10.1155/2010/848620

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabah Baibeche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baibeche, S., Bouzetouta, L., Hebhoub, F. et al. Well-posedness and energy decay for Bresse system with microtemperatures effects in the presence of delay. SeMA (2024). https://doi.org/10.1007/s40324-024-00356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40324-024-00356-6

Keywords

Mathematics Subject Classification

Navigation