Log in

Identification of the Best Anthropometric Index for Predicting the 10-Year Cardiovascular Disease in Southwest China: A Large Single-Center, Cross-Sectional Study

  • Original article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

This population-based cross-sectional study aimed to identify the best predictor of the 10-year cardiovascular (CV) high risk among old and new anthropometric indices.

Methods

We investigated 76,915 adults older than 18 years of age living in southwest China. Ten obesity indices were calculated. The 10-year cardiovascular disease (CVD) risk was estimated using the Framingham risk score. Receiver operating characteristic curve analysis was performed to assess the ability of the anthropometric index to predict the 10-year high risk of CVD events.

Results

The waist-to-hip ratio (WHR) had the highest area under the curve (AUC) value (0.711; sensitivity: 62.22%, specificity: 42.73%) in men, while the body fat index (BAI) had the lowest AUC value (0.624, sensitivity: 49.07%, specificity: 54.84%). The waist-to-height ratio (WHtR) and the body roundness index (BRI) showed the highest AUC value (0.751, sensitivity: 39.24%, 39.83%, specificity: 75.68%, 68.59%) in women, while the BAI showed the lowest AUC value (0.671, sensitivity: 53.15%, specificity: 57.14%).

Conclusions

The WHR was the best anthropometric measure for assessing the 10-year high risk of CVD in men, while the WHtR and BRI were the best measures for women. In men, the WHR should be < 0.88, and in women, the WHtR should be < 0.502 or the BRI should be < 3.41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from health management center but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of health management center.

References

  1. Thelwell M, Chiu CY, Bullas A, Hart J, Wheat J, Choppin S. How shape-based anthropometry can complement traditional anthropometric techniques: a cross-sectional study. Sci Rep. 2020;10(1):12125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou C, Zhan L, Yuan J, Tong X, Peng Y, Zha Y. Comparison of visceral, general and central obesity indices in the prediction of metabolic syndrome in maintenance hemodialysis patients. Eating and weight disorders: EWD. 2019.

  3. Guerrero-Romero F, Rodriguez-Moran M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch Med Res. 2003;34(5):428–32.

    Article  PubMed  Google Scholar 

  4. Valdez R, Seidell JC, Ahn YI, Weiss KM. A new index of abdominal adiposity as an indicator of risk for cardiovascular disease. A cross-population study. Int J Obes Relat Metab Disord. 1993;17(2):77–82.

    CAS  PubMed  Google Scholar 

  5. Milagres LC, Martinho KO, Milagres DC, Franco FS, Ribeiro AQ, de Novaes JF. Waist-to-height ratio and the conicity index are associated to cardiometabolic risk factors in the elderly population. Ciencia & Saude Coletiva. 2019;24(4):1451–61.

    Article  Google Scholar 

  6. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity. 2011;19(5):1083–9.

    Article  PubMed  Google Scholar 

  7. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE. 2012;7(7): e39504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring, Md). 2013;21(11):2264–71.

    Article  PubMed Central  Google Scholar 

  9. D’Agostino RB, Pencina MJ, Massaro JM, Coady S. Cardiovascular disease risk assessment: insights from Framingham. Glob Heart. 2013;8(1):11–23.

    Article  PubMed  Google Scholar 

  10. Meseri R, Ucku R, Unal B. Waist:height ratio: a superior index in estimating cardiovascular risks in Turkish adults. Public Health Nutr. 2014;17(10):2246–52.

    Article  PubMed  Google Scholar 

  11. Ness-Abramof R, Apovian CM. Waist circumference measurement in clinical practice. Nutr Clin Pract. 2008;23(4):397–404.

    Article  PubMed  Google Scholar 

  12. Hsieh SD, Yoshinaga H. Abdominal fat distribution and coronary heart-disease risk-factors in men-waist height ratio as a simple and useful predictor. Int J Obes. 1995;19(8):585–9.

    CAS  Google Scholar 

  13. Nevill AM, Duncan MJ, Lahart IM, Sandercock GR. Scaling waist girth for differences in body size reveals a new improved index associated with cardiometabolic risk. Scand J Med Sci Sports. 2017;27(11):1470–6.

    Article  CAS  PubMed  Google Scholar 

  14. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension-a report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J Geriatr Cardiol. 2019;16(3):182-241.

  15. National guidelines for the prevention and control of diabetes in primary care (2018). Zhonghua nei ke za zhi. 2018;57(12):885-93.

  16. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    Article  CAS  PubMed  Google Scholar 

  17. Greenhill C. Adipose tissue: sex differences in adipogenesis. Nat Rev Endocrinol. 2016;12(9):497.

    PubMed  Google Scholar 

  18. Esteghamati A, Mousavizadeh M, Noshad S, Shoar S, Khalilzadeh O, Nakhjavani M. Accuracy of anthropometric parameters in identification of high-risk patients predicted with cardiovascular risk models. Am J Med Sci. 2013;346(1):26–31.

    Article  PubMed  Google Scholar 

  19. Ramirez-Velez R, Perez-Sousa MA, Izquierdo M, Cano-Gutierrez CA, Gonzalez-Jimenez E, Schmidt-RioValle J, et al. Validation of surrogate anthropometric indices in older adults: what is the best indicator of high cardiometabolic risk factor clustering? Nutrients. 2019;11(8):1701.

    Article  CAS  PubMed Central  Google Scholar 

  20. Maessen MF, Eijsvogels TM, Verheggen RJ, Hopman MT, Verbeek AL, de Vegt F. Entering a new era of body indices: the feasibility of a body shape index and body roundness index to identify cardiovascular health status. PLoS ONE. 2014;9(9): e107212.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dhar S, Das PK, Bhattacharjee B, Awal A, Ahsan SA, Shakil SS, et al. Predictive value of waist height ratio, waist hip ratio and body mass index in assessing angiographic severity of coronary artery disease in myocardial infarction patients. Mymensingh Med J MMJ. 2020;29(4):906–13.

    CAS  PubMed  Google Scholar 

  22. Kim SH, Choi H, Won CW, Kim BS. Optimal cutoff points of anthropometric parameters to identify high coronary heart disease risk in Korean adults. J Korean Med Sci. 2016;31(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ashwell M, Gibson S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height.’ BMC Med. 2014;12(1):207.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang K, Pan L, Wang D, Dong F, Yu Y, Wang L, et al. Association between obesity indicators and cardiovascular risk factors among adults in low-income Han Chinese from southwest China. Medicine. 2020;99(30): e20176.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu LH, Hu GP, Huang X, Zhou W, You CJ, Li JX, et al. Different adiposity indices and their associations with hypertension among Chinese population from Jiangxi province. Bmc Cardiovasc Disord. 2020. https://doi.org/10.1186/s12872-020-01388-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. **ao XC, Liu YJ, Sun CL, Gang XK, Cheng J, Tian SY, et al. Evaluation of different obesity indices as predictors of type 2 diabetes mellitus in a Chinese population. J Diabetes. 2015;7(3):386–92.

    Article  CAS  PubMed  Google Scholar 

  27. Hadaegh F, Zabetian A, Sarbakhsh P, Khalili D, James WPT, Azizi F. Appropriate cutoff values of anthropometric variables to predict cardiovascular outcomes: 7.6 years follow-up in an Iranian population. Int J Obes. 2009;33(12):1437–45.

    Article  CAS  Google Scholar 

  28. Chen L, Peeters A, Magliano DJ, Shaw JE, Welborn TA, Wolfe R, et al. Anthropometric measures and absolute cardiovascular risk estimates in the Australian Diabetes, Obesity and Lifestyle (AusDiab) Study. Eur J Cardiovasc Prev Rehabil. 2007;14(6):740–5.

    Article  PubMed  Google Scholar 

  29. Goh LGH, Dhaliwal SS, Welborn TA, Lee AH, Della PR. Anthropometric measurements of general and central obesity and the prediction of cardiovascular disease risk in women: a cross-sectional study. BMJ Open. 2014;4(2):e004138.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carlsson AC, Riserus U, Engstrom G, Arnlov J, Melander O, Leander K, et al. Novel and established anthropometric measures and the prediction of incident cardiovascular disease: a cohort study. Int J Obes. 2013;37(12):1579–85.

    Article  CAS  Google Scholar 

  31. Wang F, Chen Y, Chang Y, Sun G, Sun Y. New anthropometric indices or old ones: which perform better in estimating cardiovascular risks in Chinese adults. BMC Cardiovasc Disord. 2018;18(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yalcin G, Ozsoy E, Karabag T. The relationship of body composition indices with the significance, extension and severity of coronary artery disease. Nutr Metab Cardiovasc Dis. 2020;30(12):2279–85.

    Article  PubMed  Google Scholar 

  33. Liu PJ, Ma F, Lou HP, Zhu YN. Comparison of the ability to identify cardiometabolic risk factors between two new body indices and waist-to-height ratio among Chinese adults with normal BMI and waist circumference. Public Health Nutr. 2017;20(6):984–91.

    Article  PubMed  Google Scholar 

  34. Wu L, Zhu W, Qiao Q, Huang L, Li Y, Chen L. Novel and traditional anthropometric indices for identifying metabolic syndrome in non-overweight/obese adults. Nutr Metab. 2021;18(1):3.

    Article  CAS  Google Scholar 

  35. Wu K, He S, Zheng Y, Chen XP. ABSI is a poor predictor of insulin resistance in Chinese adults and elderly without diabetes. Arch Endocrinol Metab. 2018;62(5):523–9.

    Article  PubMed  Google Scholar 

  36. Swainson MG, Batterham AM, Tsakirides C, Rutherford ZH, Hind K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS ONE. 2017;12(5):e0177175.

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Almeida RT, Pereira AD, da Fonseca MDM, de Matos SMA, Aquino EML. Association between body adiposity index and coronary risk in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Clin Nutr. 2020;39(5):1423–31.

    Article  PubMed  Google Scholar 

  38. Dhaliwal SS, Welborn TA, Goh LGH, Howat PA. Obesity as assessed by body adiposity index and multivariable cardiovascular disease risk. PLoS ONE. 2014;9(4):e94560.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suchanek P, Lesna IK, Mengerova O, Mrazkova J, Lanska V, Stavek P. Which index best correlates with body fat mass: BAI, BMI, waist or WHR? Neuroendocrinol Lett. 2012;33:78–82.

    PubMed  Google Scholar 

  40. de Lima JG, Nobrega LHC, de Souza ABC. Body adiposity index indicates only total adiposity, not risk. Obesity. 2012;20(6):1140.

    Article  PubMed  Google Scholar 

  41. Lam BC, Koh GC, Chen C, Wong MT, Fallows SJ. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE. 2015;10(4): e0122985.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Motamed N, Perumal D, Fhea M, Zamani F, Ashrafi H, Haghjoo M, et al. Conicity Index and waist-to-hip ratio are superior obesity indices in predicting 10-year cardiovascular risk among men and women. Clin Cardiol. 2015;38(9):527–34.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Zhu WH, Qiu LF, Huang LJ, Fang LZ. Sex- and age-specific optimal anthropometric indices as screening tools for metabolic syndrome in Chinese adults. Int J Endocrinol. 2018;2018:1–16.

    Google Scholar 

  44. Hajian-Tilaki K, Heidari B. Comparison of abdominal obesity measures in predicting of 10-year cardiovascular risk in an Iranian adult population using ACC/AHA risk model: a population based cross sectional study. Diabetes Metab Syndr. 2018;12(6):991–7.

    Article  CAS  PubMed  Google Scholar 

  45. Almeida RT, Almeida MM, Araujo TM. Abdominal obesity and cardiovascular risk: performance of anthropometric indexes in women. Arq Bras Cardiol. 2009;92(5):345–50 (62–7, 75–80).

    PubMed  Google Scholar 

  46. Hernández Rodríguez J, Mendoza Choqueticlla J, Duchi JP. Conicity index and its usefulness for detection of cardiovascular and metabolic risk. Rev Cuba Endocrinol. 2017;2017:1–13.

    Google Scholar 

  47. Pereira PF, Serrano HM, Carvalho GQ, Ribeiro SM, Peluzio Mdo C, Franceschini Sdo C, et al. Measurements of location of body fat distribution: an assessment of colinearity with body mass, adiposity and stature in female adolescents. Revista paulista de pediatria : orgao oficial da Sociedade de Pediatria de Sao Paulo. 2015;33(1):63–71.

    Article  Google Scholar 

  48. Cooke PS, Naaz A. Role of estrogens in adipocyte development and function. Exp Biol Med (Maywood). 2004;229(11):1127–35.

    Article  CAS  Google Scholar 

  49. Liu J, Tse LA, Liu ZG, Rangarajan S, Hu B, Yin L, et al. Predictive values of anthropometric measurements or cardiometabolic risk factors and cardiovascular diseases among 44 048 Chinese. J Am Heart Assoc. 2019. https://doi.org/10.1161/JAHA.118.010870.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Haghighatdoost F, Sarrafzadegan N, Mohammadifard N, Asgary S, Boshtam M, Azadbakht L. Assessing body shape index as a risk predictor for cardiovascular diseases and metabolic syndrome among Iranian adults. Nutrition (Burbank, Los Angeles County, Calif). 2014;30(6):636–44.

    Article  Google Scholar 

  51. Corbatón Anchuelo A, Martínez-Larrad MT, Serrano-García I, Fernández Pérez C, Serrano-Ríos M. Body fat anthropometric indexes: Which of those identify better high cardiovascular risk subjects? A comparative study in Spanish population. PLoS ONE. 2019;14(5): e0216877.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cheung YB. “A Body Shape Index” in middle-age and older Indonesian population: scaling exponents and association with incident hypertension. PLoS ONE. 2014;9(1): e85421.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chang Y, Guo X, Guo L, Li Z, Li Y, Sun Y. The feasibility of two new anthropometric indices to identify hypertension in rural China: a cross-sectional study. Medicine. 2016;95(44): e5301.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adegbija O, Hoy WE, Wang Z. Waist circumference values equivalent to body mass index points for predicting absolute cardiovascular disease risks among adults in an Aboriginal community: a prospective cohort study. BMJ Open. 2015;5(11):e009185.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  56. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28(7):850–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the support from the staff in Health Management Center, West China Hospital, Sichuan University for their generous time and support.

Funding

This work was supported by a grant from the Sichuan province health department (Grant No. Chuanganyan2012-111), the Youth Teacher Research Startup Fund of Sichuan University (2016SCU11016), the horizontal scientific research project of West China hospital (HX20110248) and the Department of Science and Technology of Sichuan Province (Grant Nos. 2017RZ0046, 2018SZ0087).

Author information

Authors and Affiliations

Authors

Contributions

QW and LW conceived the experiment(s), FZ; RL; WL; DG conducted the experiment(s), QW and LW analyzed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhang, F., Li, R. et al. Identification of the Best Anthropometric Index for Predicting the 10-Year Cardiovascular Disease in Southwest China: A Large Single-Center, Cross-Sectional Study. High Blood Press Cardiovasc Prev 29, 417–428 (2022). https://doi.org/10.1007/s40292-022-00528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-022-00528-3

Keywords

Navigation