Log in

Dapagliflozin and Empagliflozin in Paediatric Indications: A Systematic Review

  • Systematic Review
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Introduction

In adults, sodium-glucose cotransporter type 2 inhibitors have revolutionised the treatment of type 2 diabetes mellitus, heart failure, and chronic kidney disease.

Objective

We aimed to review information on compassionate use, clinical pharmacology, efficacy, and safety of dapagliflozin and empagliflozin in children.

Methods

We conducted a systematic review of published clinical trials, case reports, and observational studies in Medline, Excerpta Medica, and Web of Science databases from inception to September 2023. For the two randomised controlled trials on type 2 diabetes mellitus (T2DM), we implemented a meta-analysis on the primary outcome (mean difference in glycosylated haemoglobin [HbA1c] between intervention and placebo groups). Review Manager (RevMan), version 5.4.1, was used for this purpose.

Results

Thirty-five articles (nine case reports, ten case series, one prospective non-controlled trial, four controlled randomised trials, two surveys, six pharmacokinetic studies, and three pharmacovigilance studies) were selected, in which 415 children were exposed to either dapagliflozin or empagliflozin: 189 diabetic patients (mean age 14.7 ± 2.9 years), 32 children with glycogen storage disease type Ib (GSD Ib), glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency, or severe congenital neutropenia type 4 (8.5 ± 5.1 years), 47 children with kidney disease or heart failure (11.2 ± 6.1 years), 84 patients in pharmacokinetic studies (15.1 ± 2.3 years), and 63 patients in toxicological series. The effect of dapagliflozin and empagliflozin in T2DM was demonstrated by HbA1c reduction in two randomised trials among a total of 177 adolescents, with a mean HbA1c difference of -0.82% (95% confidence interval -1.34 to -0.29) as compared to placebo (no heterogeneity, I2 = 0%). Dosage ranged between 5 and 20 mg (mean 11.4 ± 3.7) once daily for dapagliflozin and between 5 and 25 mg (mean 15.4 ± 7.4) once daily for empagliflozin. Among the paediatric cases of GSD Ib, empagliflozin 0.1–1.3 mg/kg/day improved neutropenia, infections, and gastrointestinal health. Dapagliflozin (mean dosage 6.9 ± 5.2 mg once daily) was well-tolerated in children with chronic kidney disease and heart failure. Side effects were generally mild, the most frequent being hypoglycaemia in children with GSD Ib (33% of patients) or T2DM (14% of patients) on concomitant hypoglycaemic drugs. Diabetic ketoacidosis is rare in children.

Conclusion

Early evidence suggests that dapagliflozin and empagliflozin are well tolerated in children. A clinical pharmacology rationale currently exists only for adolescents with diabetes mellitus.

Prospero Registration Number

CRD42023438162.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braunwald E. Gliflozins in the management of cardiovascular disease. N Engl J Med. 2022;386(21):2024–34. https://doi.org/10.1056/NEJMra2115011.

    Article  CAS  PubMed  Google Scholar 

  2. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303.

    Article  CAS  PubMed  Google Scholar 

  3. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24. https://doi.org/10.1056/NEJMoa2022190.

    Article  CAS  PubMed  Google Scholar 

  4. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022;24(1):4–131.

    Article  PubMed  Google Scholar 

  5. Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954–60. https://doi.org/10.1038/s41591-021-01536-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61. https://doi.org/10.1056/NEJMoa2107038.

    Article  CAS  PubMed  Google Scholar 

  7. Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387(12):1089–98. https://doi.org/10.1056/NEJMoa2206286.

    Article  PubMed  Google Scholar 

  8. Desai AS, Lam CSP, McMurray JJV, Redfield MM. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians. JACC Heart Fail. 2023;11(6):619–36. https://doi.org/10.1016/j.jchf.2023.03.011.

    Article  PubMed  Google Scholar 

  9. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(4):422–34. https://doi.org/10.1016/j.jacc.2019.11.031.

    Article  CAS  PubMed  Google Scholar 

  10. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021;107(13):1032–8. https://doi.org/10.1136/heartjnl-2020-318060.

    Article  CAS  PubMed  Google Scholar 

  11. Katsiki N, Rizzo M, Mikhailidis DP. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and uric acid: More good news! J Diabetes Complicat. 2023;37(7): 108510. https://doi.org/10.1016/j.jdiacomp.2023.108510.

    Article  CAS  Google Scholar 

  12. Mora-Fernández C, Pérez A, Mollar A, Palau P, Amiguet M, de la Espriella R, et al. Short-term changes in klotho and FGF23 in heart failure with reduced ejection fraction—a substudy of the DAPA-VO2 study. Front Cardiovasc Med. 2023. https://doi.org/10.3389/fcvm.2023.1242108.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Helmlinger G, Sokolov V, Peskov K, Hallow KM, Kosinsky Y, Voronova V, et al. Quantitative systems pharmacology: an exemplar model-building workflow with applications in cardiovascular, metabolic, and oncology drug development. CPT Pharmacomet Syst Pharmacol. 2019;8(6):380–95. https://doi.org/10.1002/psp4.12426.

    Article  CAS  Google Scholar 

  14. Kula AJ. Considerations and possibilities for sodium-glucose cotransporter 2 inhibitors in pediatric CKD. Pediatr Nephrol. 2022;37(10):2267–76. https://doi.org/10.1007/s00467-022-05456-x.

    Article  PubMed  Google Scholar 

  15. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  16. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34. https://doi.org/10.1056/NEJMoa1515920.

    Article  CAS  PubMed  Google Scholar 

  17. Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/NEJMoa2024816.

    Article  CAS  PubMed  Google Scholar 

  18. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  19. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744.

    Article  CAS  PubMed  Google Scholar 

  20. Lava SA, Bianchetti MG, Simonetti GD. Salt intake in children and its consequences on blood pressure. Pediatr Nephrol. 2015;30(9):1389–96. https://doi.org/10.1007/s00467-014-2931-3.

    Article  PubMed  Google Scholar 

  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Piffer A, Bianchetti MG, Leoni-Foglia C, Simonetti GD, Milani GP, Lava SAG. Vaptans for oedematous and hyponatraemic disorders in childhood: a systematic literature review. Br J Clin Pharmacol. 2022;88(10):4474–80. https://doi.org/10.1111/bcp.15367.

    Article  CAS  PubMed  Google Scholar 

  23. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.

    Article  PubMed  Google Scholar 

  24. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Galderisi A, Tamborlane W, Taylor SI, Attia N, Moretti C, Barbetti F. SGLT2i improves glycemic control in patients with congenital severe insulin resistance. Pediatrics. 2022. https://doi.org/10.1542/peds.2021-055671.

    Article  PubMed  Google Scholar 

  26. Tamborlane WV, Laffel LM, Shehadeh N, Isganaitis E, Van Name M, Ratnayake J, et al. Efficacy and safety of dapagliflozin in children and young adults with type 2 diabetes: a prospective, multicentre, randomised, parallel group, phase 3 study. Lancet Diabetes Endocrinol. 2022;10(5):341–50. https://doi.org/10.1016/S2213-8587(22)00052-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biester T, Aschemeier B, Fath M, Frey M, Scheerer MF, Kordonouri O, et al. Effects of dapagliflozin on insulin-requirement, glucose excretion and ss-hydroxybutyrate levels are not related to baseline HbA1c in youth with type 1 diabetes. Diabetes Obes Metab. 2017;19(11):1635–9. https://doi.org/10.1111/dom.12975.

    Article  CAS  PubMed  Google Scholar 

  28. Biester T, Muller I, von dem Berge T, Atlas E, Nimri R, Phillip M, et al. Add-on therapy with dapagliflozin under full closed loop control improves time in range in adolescents and young adults with type 1 diabetes: the DAPADream study. Diabetes Obes Metab. 2021;23(2):599–608. https://doi.org/10.1111/dom.14258.

    Article  CAS  PubMed  Google Scholar 

  29. Dos Santos SS, Ramaldes LA, Gabbay MAL, Moises RCS, Dib SA. Use of a sodium-glucose cotransporter 2 inhibitor, empagliflozin, in a patient with Rabson–Mendenhall syndrome. Horm Res Paediatr. 2021;94(7–8):313–6. https://doi.org/10.1159/000519613.

    Article  CAS  PubMed  Google Scholar 

  30. Candler T, McGregor D, Narayan K, Moudiotis C, Burren CP. Improvement in glycaemic parameters using SGLT-2 inhibitor and GLP-1 agonist in combination in an adolescent with diabetes mellitus and Prader–Willi syndrome: a case report. J Pediatr Endocrinol Metab. 2020;33(7):951–5. https://doi.org/10.1515/jpem-2019-0389.

    Article  PubMed  Google Scholar 

  31. Kuwabara R, Urakami T, Yoshida K, Morioka I. Case of type 2 diabetes possibly caused by excessive accumulation of visceral fat in a child born small-for-gestational age. J Diabetes Investig. 2020;11(5):1366–9. https://doi.org/10.1111/jdi.13246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laffel LM, Danne T, Klingensmith GJ, Tamborlane WV, Willi S, Zeitler P, et al. Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO): a multicentre, randomised, double-blind, parallel group, phase 3 trial. Lancet Diabetes Endocrinol. 2023;11(3):169–81. https://doi.org/10.1016/S2213-8587(22)00387-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Halligan RK, Dalton RN, Turner C, Lewis KA, Mundy HR. Understanding the role of SGLT2 inhibitors in glycogen storage disease type Ib: the experience of one UK centre. Orphanet J Rare Dis. 2022;17(1):195. https://doi.org/10.1186/s13023-022-02345-2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaczor M, Greczan M, Kierus K, Ehmke Vel Emczynska-Seliga E, Ciara E, Piatosa B, et al. Sodium-glucose cotransporter type 2 channel inhibitor: breakthrough in the treatment of neutropenia in patients with glycogen storage disease type 1b? JIMD Rep. 2022;63(3):199–206. https://doi.org/10.1002/jmd2.12278.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rossi A, Miele E, Fecarotta S, Veiga-da-Cunha M, Martinelli M, Mollica C, et al. Crohn disease-like enterocolitis remission after empagliflozin treatment in a child with glycogen storage disease type Ib: a case report. Ital J Pediatr. 2021;47(1):149. https://doi.org/10.1186/s13052-021-01100-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peeks F, Hoogeveen IJ, Feldbrugge RL, Burghard R, de Boer F, Fokkert-Wilts MJ, et al. A retrospective in-depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: recommended outcome parameters for glucose management. J Inherit Metab Dis. 2021;44(5):1136–50. https://doi.org/10.1002/jimd.12383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wortmann SB, Van Hove JLK, Derks TGJ, Chevalier N, Knight V, Koller A, et al. Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood. 2020;136(9):1033–43. https://doi.org/10.1182/blood.2019004465.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mikami M, Arai A, Mizumoto H. Empagliflozin ameliorated neutropenia in a girl with glycogen storage disease Ib. Pediatr Int. 2021;63(11):1394–6. https://doi.org/10.1111/ped.14629.

    Article  CAS  PubMed  Google Scholar 

  39. Contreras EL, D'Agosto M. View from inside: Nina, Glycogen storage disease warrior. J Inherit Metab Dis. 2020;43(4):653–56. https://doi.org/10.1002/jimd.12246.

  40. Tallis E, Karsenty CL, Grimes AB, Karam LB, Elsea SH, Sutton VR, et al. Untargeted metabolomic profiling in a patient with glycogen storage disease Ib receiving empagliflozin treatment. JIMD Rep. 2022;63(4):309–15. https://doi.org/10.1002/jmd2.12304.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hexner-Erlichman Z, Veiga-da-Cunha M, Zehavi Y, Vadasz Z, Sabag AD, Tatour S, et al. Favorable outcome of empagliflozin treatment in two pediatric glycogen storage disease type 1b patients. Front Pediatr. 2022;10:1071464. https://doi.org/10.3389/fped.2022.1071464.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guerra F, Gasperini S, Bonanomi S, Crescitelli V, Pretese R, Da Dalt L, et al. Finding balance between mature and immature neutrophils: the effects of empagliflozin in GSD-Ib. EJHaem. 2023;4(2):551–4. https://doi.org/10.1002/jha2.649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murko S, Peschka M, Tsiakas K, Schulz-Jurgensen S, Herden U, Santer R. Liver transplantation in glycogen storage disease type Ib: the role of SGLT2 inhibitors. Mol Genet Metab Rep. 2023;35: 100977. https://doi.org/10.1016/j.ymgmr.2023.100977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boulanger C, Stephenne X, Diederich J, Mounkoro P, Chevalier N, Ferster A, et al. Successful use of empagliflozin to treat neutropenia in two G6PC3-deficient children: impact of a mutation in SGLT5. J Inherit Metab Dis. 2022;45(4):759–68. https://doi.org/10.1002/jimd.12509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ledeczi Z, Pittner R, Krivan G, Kardon T, Legeza B. Empagliflozin restores neutropenia and neutrophil dysfunction in a young patient with severe congenital neutropenia type 4. J Allergy Clin Immunol Pract. 2023;11(1):344–6. https://doi.org/10.1016/j.jaip.2022.10.019. (e1).

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Cui J, Fang X, Chen J, Yan W, Shen Q, et al. Efficacy and safety of dapagliflozin in children with inherited proteinuric kidney disease: a pilot study. Kidney Int Rep. 2022;7(3):638–41. https://doi.org/10.1016/j.ekir.2021.12.019.

    Article  PubMed  Google Scholar 

  47. Newland DM, Law YM, Albers EL, Friedland-Little JM, Ahmed H, Kemna MS, et al. Early clinical experience with dapagliflozin in children with heart failure. Pediatr Cardiol. 2023;44(1):146–52. https://doi.org/10.1007/s00246-022-02983-0.

    Article  PubMed  Google Scholar 

  48. Busse D, Tang W, Scheerer M, Danne T, Biester T, Sokolov V, et al. Comparison of pharmacokinetics and the exposure-response relationship of dapagliflozin between adolescent/young adult and adult patients with type 1 diabetes mellitus. Br J Clin Pharmacol. 2019;85(8):1820–8. https://doi.org/10.1111/bcp.13981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parkinson J, Tang W, Johansson CC, Boulton DW, Hamren B. Comparison of the exposure-response relationship of dapagliflozin in adult and paediatric patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2016;18(7):685–92. https://doi.org/10.1111/dom.12647.

    Article  CAS  PubMed  Google Scholar 

  50. Tirucherai GS, LaCreta F, Ismat FA, Tang W, Boulton DW. Pharmacokinetics and pharmacodynamics of dapagliflozin in children and adolescents with type 2 diabetes mellitus. Diabetes Obes Metab. 2016;18(7):678–84. https://doi.org/10.1111/dom.12638.

    Article  CAS  PubMed  Google Scholar 

  51. Laffel LMB, Tamborlane WV, Yver A, Simons G, Wu J, Nock V, et al. Pharmacokinetic and pharmacodynamic profile of the sodium-glucose co-transporter-2 inhibitor empagliflozin in young people with Type 2 diabetes: a randomized trial. Diabet Med. 2018;35(8):1096–104. https://doi.org/10.1111/dme.13629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Penland RC, Melin J, Boulton DW, Tang W. Evaluation of the pharmacokinetics of dapagliflozin in patients with chronic kidney disease with or without type 2 diabetes mellitus. J Clin Pharmacol. 2023;63(5):551–9. https://doi.org/10.1002/jcph.2196.

    Article  CAS  PubMed  Google Scholar 

  53. Jo H, Pilla Reddy V, Parkinson J, Boulton DW, Tang W. Model-informed pediatric dose selection for dapagliflozin by incorporating developmental changes. CPT Pharmacomet Syst Pharmacol. 2021;10(2):108–18. https://doi.org/10.1002/psp4.12577.

    Article  CAS  Google Scholar 

  54. Schaeffer SE, DesLauriers C, Spiller HA, Aleguas A, Baeza S, Ryan ML. Retrospective review of SGLT2 inhibitor exposures reported to 13 poison centers. Clin Toxicol (Phila). 2018;56(3):204–8. https://doi.org/10.1080/15563650.2017.1357824.

    Article  CAS  PubMed  Google Scholar 

  55. Frent I, Bucsa C, Leucuta D, Farcas A, Mogosan C. An investigation on the association between sodium glucose co-transporter 2 inhibitors use and acute pancreatitis: a VigiBase study. Pharmacoepidemiol Drug Saf. 2021;30(10):1428–40. https://doi.org/10.1002/pds.5313.

    Article  CAS  PubMed  Google Scholar 

  56. Katsuhara Y, Ikeda S. Correlations between SGLT-2 inhibitors and acute renal failure by signal detection using FAERS: stratified analysis for reporting country and concomitant drugs. Clin Drug Investig. 2021;41(3):235–43. https://doi.org/10.1007/s40261-021-01006-9.

    Article  CAS  PubMed  Google Scholar 

  57. Pereyra AM, Ramirez C, Roman R. Euglycemic ketosis in an adolescent with type 1 diabetes on insulin and dapaglifozin: case report. Rev Chil Pediatr. 2017;88(3):404–10. https://doi.org/10.4067/S0370-41062017000300015.

    Article  Google Scholar 

  58. Grunert SC, Derks TGJ, Adrian K, Al-Thihli K, Ballhausen D, Bidiuk J, et al. Efficacy and safety of empagliflozin in glycogen storage disease type Ib: data from an international questionnaire. Genet Med. 2022;24(8):1781–8. https://doi.org/10.1016/j.gim.2022.04.001.

    Article  CAS  PubMed  Google Scholar 

  59. Grunert SC, Venema A, LaFreniere J, Schneider B, Contreras E, Wortmann SB, et al. Patient-reported outcomes on empagliflozin treatment in glycogen storage disease type Ib: an international questionnaire study. JIMD Rep. 2023;64(3):252–8. https://doi.org/10.1002/jmd2.12364.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaczor M, Wesół-Kucharska D, Greczan M, Kierus K, Kałużny Ł, Duś-Żuchowska M, et al. Clinical characteristics and long-term outcomes of patients with glycogen storage disease type 1b: a retrospective multi-center experience in Poland. Pediatr Endocrinol Diabetes Metab. 2022;28(3):207–12. https://doi.org/10.5114/pedm.2022.116115.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grube PM, Beckett RD. Clinical studies of dapagliflozin in pediatric patients: a rapid review. Ann Pediatr Endocrinol Metab. 2022;27(4):265–72. https://doi.org/10.6065/apem.2244166.083.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tommerdahl KL, Nelson RG, Bjornstad P. Dapagliflozin in young people with type 2 diabetes. Lancet Diabetes Endocrinol. 2022;10(5):303–4. https://doi.org/10.1016/S2213-8587(22)00075-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amiel SA, Sherwin RS, Simonson DC, Lauritano AA, Tamborlane WV. Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes. N Engl J Med. 1986;315(4):215–9. https://doi.org/10.1056/NEJM198607243150402.

    Article  CAS  PubMed  Google Scholar 

  64. Danne T, Garg S, Peters AL, Buse JB, Mathieu C, Pettus JH, et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care. 2019;42(6):1147–54. https://doi.org/10.2337/dc18-2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cirillo L, Ravaglia F, Errichiello C, Anders HJ, Romagnani P, Becherucci F. Expectations in children with glomerular diseases from SGLT2 inhibitors. Pediatr Nephrol. 2022;37(12):2997–3008. https://doi.org/10.1007/s00467-022-05504-6.

    Article  PubMed  Google Scholar 

  66. Zhao M, Sun S, Huang Z, Wang T, Tang H. Network meta-analysis of novel glucose-lowering drugs on risk of acute kidney injury. Clin J Am Soc Nephrol. 2020;16(1):70–8. https://doi.org/10.2215/CJN.11220720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heerspink HJL, Cherney DZI. Clinical implications of an acute dip in eGFR after SGLT2 inhibitor initiation. Clin J Am Soc Nephrol. 2021;16(8):1278–80. https://doi.org/10.2215/CJN.02480221.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meoli M, Lava SAG, Bronz G, Goeggel-Simonetti B, Simonetti GD, Alberti I, et al. Eu- or hypoglycemic ketosis and ketoacidosis in children: a review. Pediatr Nephrol. 2023. https://doi.org/10.1007/s00467-023-06115-5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bellanti F, Della PO. Modelling and simulation as research tools in paediatric drug development. Eur J Clin Pharmacol. 2011;67(Suppl 1):75–86. https://doi.org/10.1007/s00228-010-0974-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harnisch L, Shepard T, Pons G, Della PO. Modeling and simulation as a tool to bridge efficacy and safety data in special populations. CPT Pharmacom Syst Pharmacol. 2013;2(2): e28. https://doi.org/10.1038/psp.2013.6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Lava is the current recipient of research grants from Fonds de perfectionnement, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Fondation SICPA, Prilly, Switzerland; Fondazione Dr. Ettore Balli, Bellinzona, Switzerland; Fondazione per il bambino malato della Svizzera italiana, Bellinzona, Switzerland; and Frieda Locher-Hofmann Stiftung, Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano A. G. Lava.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Funding

The authors did not receive support from any organisation for the submitted work.

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

Ethics approval, standard of reporting, registration

This being a systematic review, ethical approval was not required. The 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations were followed. This systematic review was pre-registered on PROSPERO, with number CRD42023438162.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

SL conceived and designed the study. SL and CL conducted the literature search and performed article selection, data extraction, and reporting quality assessment. SL performed data analysis, including statistical analysis and meta-analysis, and wrote the first draft of the manuscript. ADD contributed to table and figure preparation, and supervised statistical analysis. NS, MB, and ODP critically revised the draft of the manuscript. All authors approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 901 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lava, S.A.G., Laurence, C., Di Deo, A. et al. Dapagliflozin and Empagliflozin in Paediatric Indications: A Systematic Review. Pediatr Drugs 26, 229–243 (2024). https://doi.org/10.1007/s40272-024-00623-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-024-00623-z

Navigation