Log in

RET Inhibitors in RET Fusion-Positive Lung Cancers: Past, Present, and Future

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

While activating RET fusions are identified in various cancers, lung cancer represents the most common RET fusion-positive tumor. The clinical drug development of RET inhibitors in RET fusion-positive lung cancers naturally began after RET fusions were first identified in patient tumor samples in 2011, and thereafter paralleled drug development in RET fusion-positive thyroid cancers. Multikinase inhibitors were initially tested with limited efficacy and substantial toxicity. RET inhibitors were then designed with improved selectivity, central nervous system penetrance, and activity against RET fusions and most RET mutations, including resistance mutations. Owing their success to these rationally designed features, the first-generation selective RET tyrosine kinase inhibitors (TKIs) had higher response rates, more durable disease control, and an improved safety profile compared to the multikinase inhibitors. This led to lung and thyroid cancer, and later tumor-agnostic regulatory approvals. While next-generation RET TKIs were designed to abrogate uncommon on-target (e.g., solvent front mutation) resistance to selpercatinib and pralsetinib, many of these drugs lacked the selectivity of the first-generation TKIs, raising the question of what the future holds for drug development in RET-dependent cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene. 1995;10(1):191–8.

    CAS  PubMed  Google Scholar 

  2. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell. 2009;17(2):199–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol. 2018;15(3):151–67.

    CAS  PubMed  Google Scholar 

  4. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005;16(4–5):441–67.

    CAS  PubMed  Google Scholar 

  5. Desilets A, Repetto M, Yang SR, Sherman EJ, Drilon A. RET-altered cancers-a tumor-agnostic review of biology, diagnosis and targeted therapy activity. Cancers (Basel). 2023;15(16):4146.

    CAS  PubMed  Google Scholar 

  6. Fitze G, Paditz E, Schläfke M, Kuhlisch E, Roesner D, Schackert HK. Association of germline mutations and polymorphisms of the RET proto-oncogene with idiopathic congenital central hypoventilation syndrome in 33 patients. J Med Genet. 2003;40(2):E10.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci U S A. 1996;93(20):10657–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20(2):245–53.

    CAS  PubMed  Google Scholar 

  10. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J, et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med. 2020;383(9):813–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Offin M, Guo R, Wu SL, Sabari J, Land JD, Ni A, et al. Immunophenotype and response to immunotherapy of RET-rearranged lung cancers. JCO Precis Oncol. 2019;3.

  13. Griesinger F, Curigliano G, Thomas M, Subbiah V, Baik CS, Tan DSW, et al. Safety and efficacy of pralsetinib in RET fusion-positive non-small-cell lung cancer including as first-line therapy: update from the ARROW trial. Ann Oncol. 2022;33(11):1168–78.

    CAS  PubMed  Google Scholar 

  14. Parimi V, Tolba K, Danziger N, Kuang Z, Sun D, Lin DI, et al. Genomic landscape of 891 RET fusions detected across diverse solid tumor types. NPJ Precis Oncol. 2023;7(1):10.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23(8):1988–97.

    CAS  PubMed  Google Scholar 

  16. Yang SR, Aypar U, Rosen EY, Mata DA, Benayed R, Mullaney K, et al. A performance comparison of commonly used assays to detect RET fusions. Clin Cancer Res. 2021;27(5):1316–28.

    CAS  PubMed  Google Scholar 

  17. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30(35):4352–9.

    CAS  PubMed  Google Scholar 

  18. Cai W, Su C, Li X, Fan L, Zheng L, Fei K, Zhou C. KIF5B-RET fusions in Chinese patients with non-small cell lung cancer. Cancer. 2013;119(8):1486–94.

    CAS  PubMed  Google Scholar 

  19. Wang X. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochim Biophys Acta. 2013;1834(10):2205–12.

    CAS  PubMed  Google Scholar 

  20. Hess LM, Han Y, Zhu YE, Bhandari NR, Sireci A. Characteristics and outcomes of patients with RET-fusion positive non-small lung cancer in real-world practice in the United States. BMC Cancer. 2021;21(1):28.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Drilon A, Lin JJ, Filleron T, Ni A, Milia J, Bergagnini I, et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J Thorac Oncol. 2018;13(10):1595–601.

    PubMed  PubMed Central  Google Scholar 

  22. Rotow J, Patel JD, Hanley MP, Yu H, Awad M, Goldman JW, et al. Osimertinib and selpercatinib efficacy, safety, and resistance in a multicenter, prospectively treated cohort of EGFR-mutant and RET fusion-positive lung cancers. Clin Cancer Res. 2023;29(16):2979–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, Oh M, et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin Cancer Res. 2019;25(19):5832–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh N, Temin S, Baker S Jr, Blanchard E, Brahmer JR, Celano P, et al. Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline. J Clin Oncol. 2022;40(28):3310–22.

    CAS  PubMed  Google Scholar 

  25. Belli C, Penault-Llorca F, Ladanyi M, Normanno N, Scoazec JY, Lacroix L, et al. ESMO recommendations on the standard methods to detect RET fusions and mutations in daily practice and clinical research. Ann Oncol. 2021;32(3):337–50.

    CAS  PubMed  Google Scholar 

  26. Feng J, Li Y, Wei B, Guo L, Li W, **a Q, et al. Clinicopathologic characteristics and diagnostic methods of RET rearrangement in Chinese non-small cell lung cancer patients. Transl Lung Cancer Res. 2022;11(4):617–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Furugaki K, Mochizuki M, Kohno M, Shu S, Harada N, Yoshimura Y. Expression of C-terminal ALK, RET, or ROS1 in lung cancer cells with or without fusion. BMC Cancer. 2019;19(1):301.

    PubMed  PubMed Central  Google Scholar 

  28. Zhang T, Lu Y, Ye Q, Zhang M, Zheng L, Yin X, et al. An evaluation and recommendation of the optimal methodologies to detect RET gene rearrangements in papillary thyroid carcinoma. Genes Chromosomes Cancer. 2015;54(3):168–76.

    CAS  PubMed  Google Scholar 

  29. Vaughn CP, Costa JL, Feilotter HE, Petraroli R, Bagai V, Rachiglio AM, et al. Simultaneous detection of lung fusions using a multiplex RT-PCR next generation sequencing-based approach: a multi-institutional research study. BMC Cancer. 2018;18(1):828.

    PubMed  PubMed Central  Google Scholar 

  30. Benayed R, Offin M, Mullaney K, Sukhadia P, Rios K, Desmeules P, et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin Cancer Res. 2019;25(15):4712–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Evers DL, He J, Kim YH, Mason JT, O’Leary TJ. Paraffin embedding contributes to RNA aggregation, reduced RNA yield, and low RNA quality. J Mol Diagn. 2011;13(6):687–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li W, Turner A, Aggarwal P, Matter A, Storvick E, Arnett DK, Broeckel U. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genom. 2015;16:1069.

    Google Scholar 

  33. Aldea M, Marinello A, Duruisseaux M, Zrafi W, Conci N, Massa G, et al. RET-MAP: an international multicenter study on Clinicobiologic Features and Treatment Response in Patients With Lung Cancer Harboring a <em>RET</em> Fusion. J Thorac Oncol. 2023;18(5):576–86.

    CAS  PubMed  Google Scholar 

  34. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou C, Solomon B, Loong HH, Park K, Pérol M, Arriola E, et al. First-line selpercatinib or chemotherapy and pembrolizumab in RET fusion-positive NSCLC. N Engl J Med. 2023;389(20):1839–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takeda M, Sakai K, Nishio K, Nakagawa K. Successful long-term treatment of non-small cell lung cancer positive for RET rearrangement with pemetrexed. Onco Targets Ther. 2019;12:5355–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Drilon A, Bergagnini I, Delasos L, Sabari J, Woo KM, Plodkowski A, et al. Clinical outcomes with pemetrexed-based systemic therapies in RET-rearranged lung cancers. Ann Oncol. 2016;27(7):1286–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Saito M, Ishigame T, Tsuta K, Kumamoto K, Imai T, Kohno T. A mouse model of KIF5B-RET fusion-dependent lung tumorigenesis. Carcinogenesis. 2014;35(11):2452–6.

    CAS  PubMed  Google Scholar 

  39. Huang Q, Schneeberger VE, Luetteke N, ** C, Afzal R, Budzevich MM, et al. Preclinical modeling of KIF5B-RET fusion lung adenocarcinoma. Mol Cancer Ther. 2016;15(10):2521–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li GG, Somwar R, Joseph J, Smith RS, Hayashi T, Martin L, et al. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin Cancer Res. 2017;23(12):2981–90.

    CAS  PubMed  Google Scholar 

  41. Verbeek HH, Alves MM, de Groot JW, Osinga J, Plukker JT, Links TP, Hofstra RM. The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells. J Clin Endocrinol Metab. 2011;96(6):E991–5.

    CAS  PubMed  Google Scholar 

  42. Roskoski R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res. 2016;103:26–48.

    CAS  PubMed  Google Scholar 

  43. Gozgit JM, Chen T-H, Clackson T, Rivera V. Abstract 2084: Ponatinib is a highly potent inhibitor of activated variants of RET found in MTC and NSCLC. Cancer Res. 2013;73(8_Supplement):2084–2084.

    Google Scholar 

  44. Drilon A, Fu S, Patel MR, Fakih M, Wang D, Olszanski AJ, et al. A Phase I/Ib Trial of the VEGFR-Sparing Multikinase RET Inhibitor RXDX-105. Cancer Discov. 2019;9(3):384–95.

    CAS  PubMed  Google Scholar 

  45. Gainor JF, Gadgeel S, Ou SI, Yeap B, Otterson GA, Shaw AT. A Phase II study of the multikinase inhibitor ponatinib in patients with advanced, RET-rearranged NSCLC. JTO Clin Res Rep. 2020;1(3): 100045.

    PubMed  PubMed Central  Google Scholar 

  46. Horiike A, Takeuchi K, Uenami T, Kawano Y, Tanimoto A, Kaburaki K, et al. Sorafenib treatment for patients with RET fusion-positive non-small cell lung cancer. Lung Cancer. 2016;93:43–6.

    PubMed  Google Scholar 

  47. Takeuchi S, Yanagitani N, Seto T, Hattori Y, Ohashi K, Morise M, et al. Phase 1/2 study of alectinib in RET-rearranged previously-treated non-small cell lung cancer (ALL-RET). Transl Lung Cancer Res. 2021;10(1):314–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoh K, Seto T, Satouchi M, Nishio M, Yamamoto N, Murakami H, et al. Final survival results for the LURET phase II study of vandetanib in previously treated patients with RET-rearranged advanced non-small cell lung cancer. Lung Cancer. 2021;155:40–5.

    CAS  PubMed  Google Scholar 

  50. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.

    CAS  PubMed  Google Scholar 

  51. Elisei R, Schlumberger MJ, Müller SP, Schöffski P, Brose MS, Shah MH, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sherman SI, Clary DO, Elisei R, Schlumberger MJ, Cohen EE, Schöffski P, et al. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer. 2016;122(24):3856–64.

    CAS  PubMed  Google Scholar 

  53. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–90.

    CAS  PubMed  Google Scholar 

  54. Platt A, Morten J, Ji Q, Elvin P, Womack C, Su X, et al. A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized Phase III studies. BMC Cancer. 2015;15:171.

    PubMed  PubMed Central  Google Scholar 

  55. Morabito A, Piccirillo MC, Costanzo R, Sandomenico C, Carillio G, Daniele G, et al. Vandetanib: an overview of its clinical development in NSCLC and other tumors. Drugs Today (Barc). 2010;46(9):683–98.

    CAS  PubMed  Google Scholar 

  56. Lee SH, Lee JK, Ahn MJ, Kim DW, Sun JM, Keam B, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring <em>RET</em> rearrangement: a phase II clinical trial. Ann Oncol. 2017;28(2):292–7.

    PubMed  Google Scholar 

  57. Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29(8):1869–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Subbiah V, Shen T, Terzyan SS, Liu X, Hu X, Patel KP, et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol. 2021;32(2):261–8.

    CAS  PubMed  Google Scholar 

  59. Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 2018;8(7):836–49.

    CAS  PubMed  Google Scholar 

  60. Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med. 2020;383(9):825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Drilon A, Subbiah V, Gautschi O, Tomasini P, de Braud F, Solomon BJ, et al. Selpercatinib in patients with RET fusion-positive non-small-cell lung cancer: updated safety and efficacy from the registrational LIBRETTO-001 phase I/II trial. J Clin Oncol. 2023;41(2):385–94.

    CAS  PubMed  Google Scholar 

  62. Subbiah V, Wolf J, Konda B, Kang H, Spira A, Weiss J, et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol. 2022;23(10):1261–73.

    CAS  PubMed  Google Scholar 

  63. Markham A. Selpercatinib: First Approval. Drugs. 2020;80(11):1119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. US FDA. FDA D.I.S.C.O. Burst Edition: FDA approvals of Retevmo (selpercatinib) for adult patients with locally advanced or metastatic RET fusion-positive solid tumors, and Retevmo (selpercatinib) for adult patients with locally advanced or metastatic RET fusion-positive non-small cell lung cancer. 2022 [cited 2023; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approvals-retevmo-selpercatinib-adult-patients-locally-advanced-or. Accessed 21 Jan 2024.

  65. CADTH. CADTH; Available from: https://www.cadth.ca/selpercatinib. Accessed 21 Jan 2024.

  66. China NMPA. Available from: https://www.prnewswire.com/news-releases/the-china-nmpa-approves-selpercatinib-for-the-treatment-of-patients-with-ret-driven-lung-and-thyroid-cancers-301644366.html. Accessed 21 Jan 2024.

  67. EMA. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/retsevmo. Accessed 21 Jan 2024.

  68. Government of Canada. Available from: https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/notice-compliance/conditions/qualifying-notice-retevmo-243748.html. Accessed 21 Jan 2024.

  69. Subbiah V, Cassier PA, Siena S, Garralda E, Paz-Ares L, Garrido P, et al. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat Med. 2022;28(8):1640–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tan AC, Seet AOL, Lai GGY, Lim TH, Lim AST, Tan GS, et al. Molecular characterization and clinical outcomes in <em>RET</em>-rearranged NSCLC. J Thorac Oncol. 2020;15(12):1928–34.

    CAS  PubMed  Google Scholar 

  71. Gadgeel SM, Gainor J, Cappuzzo F, Garralda E, Lee DH, Mazieres J, et al. 984P Relationship between RET fusion partner and treatment outcomes in patients (pts) with non-small cell lung cancer (NSCLC) from the phase I/II ARROW study and real-world data (RWD). Ann Oncol. 2022;33:S1001–2.

    Google Scholar 

  72. Subbiah V, Gainor JF, Oxnard GR, Tan DSW, Owen DH, Cho BC, et al. Intracranial efficacy of selpercatinib in RET fusion-positive non-small cell lung cancers on the LIBRETTO-001 trial. Clin Cancer Res. 2021;27(15):4160–7.

    PubMed  PubMed Central  Google Scholar 

  73. Murciano-Goroff YR, Falcon CJ, Lin ST, Chacko C, Grimaldi G, Liu D, et al. Central nervous system disease in patients with RET fusion-positive NSCLC treated with selpercatinib. J Thorac Oncol. 2023;18(5):620–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo R, Schreyer M, Chang JC, Rothenberg SM, Henry D, Cotzia P, et al. Response to selective RET inhibition with LOXO-292 in a patient with RET fusion-positive lung cancer with leptomeningeal metastases. JCO Precis Oncol. 2019;3:1–6.

    Google Scholar 

  75. Popat S, Liu SV, Scheuer N, Hsu GG, Lockhart A, Ramagopalan SV, et al. Addressing challenges with real-world synthetic control arms to demonstrate the comparative effectiveness of Pralsetinib in non-small cell lung cancer. Nat Commun. 2022;13(1):3500.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rolfo C, Hess LM, Jen MH, Peterson P, Li X, Liu H, et al. External control cohorts for the single-arm LIBRETTO-001 trial of selpercatinib in RET+ non-small-cell lung cancer. ESMO Open. 2022;7(4): 100551.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Meng Y, Yang Y, Fang Y, Lin X, **e X, Deng H, et al. The treatment status of patients in NSCLC with RET fusion under the prelude of selective RET-TKI application in China: a multicenter retrospective research. Front Oncol. 2022;12: 864367.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cooper AJ, Drilon AE, Rotow JK, Liu SV, Gautschi O, Smith KER, et al. First results from the RETgistry: A global consortium for the study of resistance to RET inhibition in RET-altered solid tumors. J Clin Oncol. 2023;41(16_suppl):9065–9065.

    Google Scholar 

  79. Wu Y-L, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in resected EGFR-mutated non–small-cell lung cancer. N Engl J Med. 2020;383(18):1711–23.

    CAS  PubMed  Google Scholar 

  80. Tsuboi M, Herbst RS, John T, Kato T, Majem M, Grohé C, et al. Overall survival with osimertinib in resected EGFR-mutated NSCLC. N Engl J Med. 2023;389(2):137–47.

    CAS  PubMed  Google Scholar 

  81. Solomon BJ, Ahn JS, Dziadziuszko R, Barlesi F, Nishio M, Lee DH, et al. LBA2 ALINA: Efficacy and safety of adjuvant alectinib versus chemotherapy in patients with early-stage ALK+ non-small cell lung cancer (NSCLC). Ann Oncol. 2023;34:S1295–6.

    Google Scholar 

  82. Goldman JW, Sholl LM, Dacic S, Fishbein MC, Murciano-Goroff YR, Rajaram R, et al. Case Report: Complete pathologic response to neoadjuvant selpercatinib in a patient with resectable early-stage RET fusion-positive non-small cell lung cancer. Front Oncol. 2023;13:1178313.

    PubMed  PubMed Central  Google Scholar 

  83. Lee JM, Sepesi B, Toloza EM, Lin J, Pass HI, Johnson BE, et al. EP02.04-005 phase II NAUTIKA1 study of targeted therapies in stage II-III NSCLC: preliminary data of neoadjuvant alectinib for ALK+ NSCLC. J Thorac Oncol. 2022;17(9_Supplement):S233–4.

    Google Scholar 

  84. Gainor JF, Curigliano G, Kim D-W, Lee DH, Besse B, Baik CS, et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021;22(7):959–69.

    CAS  PubMed  Google Scholar 

  85. Boucai L, Salas-Lucia F, Krishnamoorthy GP, Sherman E, Rudin CM, Drilon A, et al. Selpercatinib-induced hypothyroidism through off-target inhibition of type 2 iodothyronine deiodinase. JCO Precis Oncol. 2022;6: e2100496.

    PubMed  PubMed Central  Google Scholar 

  86. Kalchiem-Dekel O, Falcon CJ, Bestvina CM, Liu D, Kaplanis LA, Wilhelm C, et al. Brief report: chylothorax and chylous ascites during RET tyrosine kinase inhibitor therapy. J Thorac Oncol. 2022;17(9):1130–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fricke J, Wang J, Gallego N, Mambetsariev I, Kim P, Babikian R, et al. Selpercatinib and pralsetinib induced chylous ascites in RET-rearranged lung adenocarcinoma: a case series. Clin Lung Cancer. 2023;24(7):666–71.

    CAS  PubMed  Google Scholar 

  88. Chen MF, Harada G, Liu D, DeMatteo R, Falcon C, Wilhelm C, et al. Brief Report: tyrosine kinase inhibitors for lung cancers that inhibit MATE-1 can lead to “False” decreases in renal function. J Thorac Oncol. 2024;19(1):153–9.

    PubMed  Google Scholar 

  89. Tanizaki J, Hayashi H. Unraveling pseudo kidney injury: the significance of understanding our “MATE” in molecular-targeted therapies. J Thorac Oncol. 2024;19(1):15–7.

    PubMed  Google Scholar 

  90. Rosen EY, Won HH, Zheng Y, Cocco E, Selcuklu D, Gong Y, et al. The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nat Commun. 2022;13(1):1450.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-art strategies for targeting RET-dependent cancers. J Clin Oncol. 2020;38(11):1209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Solomon BJ, Tan L, Lin JJ, Wong SQ, Hollizeck S, Ebata K, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol. 2020;15(4):541–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin JJ, Liu SV, McCoach CE, Zhu VW, Tan AC, Yoda S, et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol. 2020;31(12):1725–33.

    CAS  PubMed  Google Scholar 

  94. Shen T, Hu X, Liu X, Subbiah V, Mooers BHM, Wu J. The L730V/I RET roof mutations display different activities toward pralsetinib and selpercatinib. NPJ Precis Oncol. 2021;5(1):48.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Śmiech M, Leszczyński P, Kono H, Wardell C, Taniguchi H. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks. Genes (Basel). 2020;11(11):1342.

    PubMed  Google Scholar 

  96. Offin M, Chan JM, Tenet M, Rizvi HA, Shen R, Riely GJ, et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol. 2019;14(10):1784–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marcoux N, Gettinger SN, O’Kane G, Arbour KC, Neal JW, Husain H, et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J Clin Oncol. 2019;37(4):278–85.

    CAS  PubMed  Google Scholar 

  98. Dimou A, Lo Y-C, Merrell KW, Halling KC, Mansfield AS. Small cell transformation in a patient with RET fusion-positive lung adenocarcinoma on pralsetinib. JCO Precis Oncol. 2022;6: e2200478.

    PubMed  Google Scholar 

  99. Gazeu A, Aubert M, Pissaloux D, Lantuejoul S, Pérol M, Ikhlef N, et al. Small-cell lung cancer transformation as a mechanism of resistance to pralsetinib in RET-rearranged lung adenocarcinoma: a case report. Clin Lung Cancer. 2023;24(1):72–5.

    CAS  PubMed  Google Scholar 

  100. Zhou Q, Wu Y-L, Zheng X, Li D, Huang D, Li X, et al. A phase I study of KL590586, a next-generation selective RET inhibitor, in patients with RET-altered solid tumors. J Clin Oncol. 2023;41(16_suppl):3007–3007.

    Google Scholar 

  101. Zhou C, Li W, Zhang Y, Song Z, Wang Y, Huang D, et al. A first-in-human phase I, dose-escalation and dose-expansion study of SY-5007, a highly potent and selective RET inhibitor, in Chinese patients with advanced RET positive solid tumors. J Clin Oncol. 2023;41(16_suppl):9111–9111.

    Google Scholar 

  102. Lu S, Wang Q, Wu L, **ng L, Li Y, Han L, et al. Abstract CT201: HS-10365, a highly potent and selective RET tyrosine kinase inhibitor, demonstrates robust activity in RET fusion positive NSCLC patients. Cancer Res. 2023;83(8_Supplement):CT201.

    Google Scholar 

  103. Kaneta Y, Komatsu T, Miyamoto M, Goto M, Namiki H, Shibata Y, et al. Abstract B173: Preclinical characterization and antitumor efficacy of DS-5010, a highly potent and selective RET inhibitor. Mol Cancer Therap. 2018;17(1_Supplement):B173–B173.

    Google Scholar 

  104. National Center for Biotechnology Information. PubChem Compound Summary for CID 134391533, Zeteletinib. 2024 [cited 2024 February 15]; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Zeteletinib. Accessed 21 Jan 2024.

  105. Schoffski P, Cho BC, Italiano A, Loong HHF, Massard C, Medina Rodriguez L, et al. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET-altered tumors including RET-fusion+ NSCLC and RET-mutant MTC: Phase 1 study results. J Clin Oncol. 2021;39(15_suppl):3008–3008.

    Google Scholar 

  106. Subbiah V, Zhong J, Lu Y, Liu Y, Chen M, Chen X, et al. The development of APS03118, a potent next-generation RET inhibitor for treating RET-inhibitor-resistant patients. J Clin Oncol. 2022;40(16_suppl):e15107–e15107.

    Google Scholar 

  107. Miyazaki I, Odintsov I, Ishida K, Lui AJW, Kato M, Suzuki T, et al. Vepafestinib is a pharmacologically advanced RET-selective inhibitor with high CNS penetration and inhibitory activity against RET solvent front mutations. Nat Cancer. 2023;4(9):1345–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 134164132, Vepafestinib. [cited 2024 February 15]. 2024. https://pubchem.ncbi.nlm.nih.gov/compound/Vepafestinib.

  109. Miyazaki I, Ishida K, Suzuki T. RCSB. Available from: https://www.rcsb.org/3d-view/7DUA?preset=ligandInteraction&label_asym_id=C. Accessed 21 Jan 2024.

  110. Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, et al. Unbound Brain-to-plasma partition coefficient, K(p, uu, brain)-a game changing parameter for CNS drug discovery and development. Pharm Res. 2022;39(7):1321–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Drilon A, Rogers E, Zhai D, Deng W, Zhang X, Lee D, et al. TPX-0046 is a novel and potent RET/SRC inhibitor for RET-driven cancers. Ann Oncol. 2019;30:v190–1.

    Google Scholar 

  112. Vodopivec DM, Hu MI. RET kinase inhibitors for RET-altered thyroid cancers. Therap Adv Med Oncol. 2022;14:17588359221101692.

    CAS  Google Scholar 

  113. Repetto M, Crimini E, Ascione L, Boscolo Bielo L, Belli C, Curigliano G. The return of RET GateKeeper mutations? An in-silico exploratory analysis of potential resistance mechanisms to novel RET macrocyclic inhibitor TPX-0046. Investig New Drugs. 2022;40(5):1133–6.

    CAS  Google Scholar 

  114. Drilon A. TPX-0046 showcases early clinical Activity in RET-driven advanced solid tumors, Onclive, Editor. 2021.

  115. Kolakowski G, Anderson E, Ballard J, Brandhuber B, Condroski K, Gomez E, et al. Abstract 1464: pre-clinical characterization of potent and selective next-generation RET inhibitors. Cancer Res. 2021;81:1464–1464.

    Google Scholar 

  116. Niu C, Zheng M, Wang H, Ji K, Li M, Wang G, et al. Abstract 3419: TY-1091, a highly selective and potent second-generation RET inhibitor, demonstrates superior antitumor activity in multiple RET-mutant models. Cancer Res. 2023;83(7_Supplement):3419–3419.

    Google Scholar 

  117. MedKoo. Available from: https://www.medkoo.com/products/53430. Accessed 21 Jan 2024.

  118. Jiang Y, Peng X, Ji Y, Dai Y, Fang Y, **ong B, et al. The novel RET inhibitor SYHA1815 inhibits RET-driven cancers and overcomes gatekeeper mutations by inducing G(1) cell-cycle arrest through c-Myc downregulation. Mol Cancer Ther. 2021;20(11):2198–206.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Drilon.

Ethics declarations

Funding

This research was partially supported by grants from the National Cancer Institute/National Institutes of Health (R01CA251591, R01CA273224-01, and P30CA008748), LUNGevity, and Happy Lungs.

Conflicts of Interest

Monica F. Chen reports funding from a T32-CA009207 and ASCO Young Investigator Award grant; stock: NVO, DGX, DOCS, FIGS. Matteo Repetto reports travel support from Sanofi. Clare Wilhelm reports no conflicts of interest. Alexander Drilon reports Honoraria/Advisory Boards: 14ner/Elevation Oncology, Amgen, Abbvie, ArcherDX, AstraZeneca, Beigene, BergenBio, Blueprint Medicines, Chugai Pharmaceutical, EcoR1, EMD Serono, Entos, Exelixis, Helsinn, Hengrui Therapeutics, Ignyta/Genentech/Roche, Janssen, Loxo/Bayer/Lilly, Merus, Monopteros, MonteRosa, Novartis, Nuvalent, Pfizer, Prelude, Repare RX, Takeda/Ariad/Millenium, Treeline Bio, TP Therapeutics, Tyra Biosciences, Verastem; Associated Research to Institution: Foundation Medicine, Teva, Taiho, GlaxSmithKlein; Equity: mBrace, Treeline; Copyright: Selpercatinib-Osimertinib (pending); Royalties: Wolters Kluwer, UpToDate, Food/Beverage: Boehringer Ingelheim, Merck, Puma: CME Honoraria: Answers in CME, Applied Pharmaceutical Science, Inc, AXIS, Clinical Care Options, EPG Health, Harborside Nexus, I3 Health, Imedex, Liberum, Medendi, Medscape, Med Learning, MJH Life Sciences, MORE Health, Ology, OncLive, Paradigm, Peerview Institute, PeerVoice, Physicians Education Resources, Remedica Ltd, Research to Practice, RV More, Targeted Oncology, TouchIME, WebMD.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

No datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Author Contributions

Monica Chen, Matteo Repetto, and Alexander Drilon contributed to the study conception and design. The first draft of the manuscript was written by Monica Chen and Matteo Repetto. All authors critically revised the manuscript and read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M.F., Repetto, M., Wilhelm, C. et al. RET Inhibitors in RET Fusion-Positive Lung Cancers: Past, Present, and Future. Drugs (2024). https://doi.org/10.1007/s40265-024-02040-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40265-024-02040-5

Navigation