Log in

Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Hyperuricemia with consequent monosodium urate crystal deposition leads to gout, characterized by painful, incapacitating inflammatory arthritis flares that are also associated with increased cardiovascular event and related mortality risk. This narrative review focuses on emerging pharmacologic urate-lowering treatment (ULT) and management strategies in gout. Undertreated, gout can progress to palpable tophi and joint damage. In oral ULT clinical trials, target serum urate of < 6.0 mg/dL can be achieved in ~ 80–90% of subjects, with flare burden reduction by 1–2 years. However, real-world ULT results are far less successful, due to both singular patient nonadherence and prescriber undertreatment, particularly in primary care, where most patients are managed. Multiple dose titrations commonly needed to optimize first-line allopurinol ULT monotherapy, and substantial potential toxicities and other limitations of approved, marketed oral monotherapy ULT drugs, promote hyperuricemia undertreatment. Common gout comorbidities with associated increased mortality (e.g., moderate–severe chronic kidney disease [CKD], type 2 diabetes, hypertension, atherosclerosis, heart failure) heighten ULT treatment complexity and emphasize unmet needs for better and more rapid clinically significant outcomes, including attenuated gout flare burden. The gout drug armamentarium will be expanded by integrating sodium-glucose cotransporter-2 (SGLT2) inhibitors with uricosuric and anti-inflammatory properties as well as clinically indicated antidiabetic, nephroprotective, and/or cardioprotective effects. The broad ULT developmental pipeline is loaded with multiple uricosurics that selectively target uric acid transporter 1 (URAT1). Evolving ULT approaches include administering selected gut anaerobic purine degrading bacteria (PDB), modulating intestinal urate transport, and employing liver-targeted xanthine oxidoreductase mRNA knockdown. Last, emerging measures to decrease the immunogenicity of systemically administered recombinant uricases should simplify treatment regimens and further improve outcomes in managing the most severe gout phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021;397:1843–55. https://doi.org/10.1016/S0140-6736(21)00569-9.

    Article  CAS  PubMed  Google Scholar 

  2. Neogi T, Jansen TL, Dalbeth N, Fransen J, Schumacher HR, Berendsen D, et al. Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 2015;67:2557–68. https://doi.org/10.1002/art.39254.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dalbeth N, Pool B, Gamble GD, Smith T, Callon KE, McQueen FM, et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 2010;62:1549–56. https://doi.org/10.1002/art.27356.

    Article  CAS  PubMed  Google Scholar 

  4. Towiwat P, Chhana A, Dalbeth N. The anatomical pathology of gout: a systematic literature review. BMC Musculoskelet Disord. 2019;20:140. https://doi.org/10.1186/s12891-019-2519-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Safiri S, Kolahi AA, Cross M, Carson-Chahhoud K, Hoy D, Almasi-Hashiani A, et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the global burden of disease study 2017. Arthritis Rheumatol. 2020;72:1916–27. https://doi.org/10.1002/art.41404.

    Article  CAS  PubMed  Google Scholar 

  6. Jeong YJ, Park S, Yon DK, Lee SW, Tizaoui K, Koyanagi A, et al. Global burden of gout in 1990–2019: a systematic analysis of the Global Burden of Disease study 2019. Eur J Clin Investig. 2023;53: e13937. https://doi.org/10.1111/eci.13937.

    Article  Google Scholar 

  7. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16:380–90. https://doi.org/10.1038/s41584-020-0441-1.

    Article  PubMed  Google Scholar 

  8. Yokose C, McCormick N, Lu N, Tanikella S, Lin K, Joshi AD, Raffield LM, Warner E, Merriman T, Hsu J, Saag K, Zhang Y, Choi HK. Trends in prevalence of Gout among US Asian Adults, 2011–2018. JAMA Netw Open. 2023;6: e239501. https://doi.org/10.1001/jamanetworkopen.2023.9501.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am J Med. 2012;125:679-687.e1. https://doi.org/10.1016/j.amjmed.2011.09.033.

    Article  PubMed  Google Scholar 

  10. Juraschek SP, Tunstall-Pedoe H, Woodward M. Serum uric acid and the risk of mortality during 23 years follow-up in the Scottish Heart Health Extended Cohort Study. Atherosclerosis. 2014;233(2):623–9. https://doi.org/10.1016/j.atherosclerosis.2014.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stack AG, Hanley A, Casserly LF, Cronin CJ, Abdalla AA, Kiernan TJ, et al. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013. https://doi.org/10.1093/qjmed/hct083.

    Article  PubMed  Google Scholar 

  12. Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Risk of venous thromboembolism with gout flares. Arthritis Rheumatol. 2023. https://doi.org/10.1002/art.42480.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Association between gout flare and subsequent cardiovascular events among patients with gout. JAMA. 2022;328:440–50. https://doi.org/10.1001/jama.2022.11390.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oh YJ, Moon KW. Presence of tophi is associated with a rapid decline in the renal function in patients with gout. Sci Rep. 2021;11(1):5684. https://doi.org/10.1038/s41598-021-84980-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS, Jeff J, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J. 2016;9:444–53. https://doi.org/10.1093/ckj/sfw010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–45. https://doi.org/10.1146/annurev-physiol-021113-170343.

    Article  CAS  PubMed  Google Scholar 

  17. Nigam SK, Bhatnagar V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr Opin Nephrol Hypertens. 2018;27:305–13. https://doi.org/10.1097/MNH.0000000000000427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development. Rheumatol Int. 2022;42:403–12. https://doi.org/10.1007/s00296-021-05007-x.

    Article  CAS  PubMed  Google Scholar 

  19. Grelska A, Sharan D, Light SH. Purine-ifying uric acid by gut microbes. Cell Chem Biol. 2023;30:706–8. https://doi.org/10.1016/j.chembiol.2023.06.022.

    Article  CAS  PubMed  Google Scholar 

  20. Leask MP, Merriman TR. The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol. 2021;35: 101721. https://doi.org/10.1016/j.berh.2021.101721.

    Article  PubMed  Google Scholar 

  21. Mandal AK, Leask MP, Sumpter NA, Choi HK, Merriman TR, Mount DB. Genetic and physiological effects of insulin-like growth factor-1 (IGF-1) on human urate homeostasis. J Am Soc Nephrol. 2023;34:451–66. https://doi.org/10.1681/ASN.0000000000000054.

    Article  PubMed  Google Scholar 

  22. Mandal AK, Leask MP, Estiverne C, Choi HK, Merriman TR, Mount DB. Genetic and physiological effects of insulin on human urate homeostasis. Front Physiol. 2021;12: 713710. https://doi.org/10.3389/fphys.2021.713710.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54. https://doi.org/10.1038/ng.2500.

    Article  CAS  PubMed  Google Scholar 

  24. Ohashi Y, Toyoda M, Saito N, Koizumi M, Kanai G, Komaba H, et al. Evaluation of ABCG2-mediated extra-renal urate excretion in hemodialysis patients. Sci Rep. 2023;13:93. https://doi.org/10.1038/s41598-022-26519-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pierzynowska K, Deshpande A, Mosiichuk N, Terkeltaub R, Szczurek P, Salido E, et al. Oral treatment with an engineered uricase, ALLN-346, reduces hyperuricemia, and uricosuria in urate oxidase-deficient mice. Front Med (Lausanne). 2020;7: 569215. https://doi.org/10.3389/fmed.2020.569215.

    Article  PubMed  Google Scholar 

  26. Higashino T, Takada T, Nakaoka H, Toyoda Y, Stiburkova B, Miyata H, et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3: e000464. https://doi.org/10.1136/rmdopen-2017-000464.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toyoda Y, Nakayama A, Nakatochi M, Kawamura Y, Nakaoka H, Yamamoto K, et al. Genome-wide meta-analysis between renal overload type and renal underexcretion type of clinically defined gout in Japanese populations. Mol Genet Metab. 2022;136:186–9. https://doi.org/10.1016/j.ymgme.2022.01.100.

    Article  CAS  PubMed  Google Scholar 

  28. Lin CT, Chen IC, Chen YJ, Lin YC, Chang JC, Wang TJ, et al. The ABCG2 rs2231142 polymorphism and the risk of nephrolithiasis: a case-control study from the Taiwan biobank. Front Endocrinol (Lausanne). 2023;14:1074012. https://doi.org/10.3389/fendo.2023.1074012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med. 2017;10:129–42. https://doi.org/10.2147/PGPM.S105854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pálinkás M, Szabó E, Kulin A, Mózner O, Rásonyi R, Juhász P, et al. Genetic polymorphisms and decreased protein expression of ABCG2 urate transporters are associated with susceptibility to gout, disease severity and renal-overload hyperuricemia. Clin Exp Med. 2022. https://doi.org/10.1007/s10238-022-00848-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. AlAzzeh O, Roman YM. The frequency of rs2231142 in ABCG2 among Native Hawaiian and Pacific Islander subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics. 2023;24:173–82. https://doi.org/10.2217/pgs-2022-0160.

    Article  CAS  PubMed  Google Scholar 

  32. Matsuo H, Ichida K, Takada T, Nakayama A, Nakashima H, Nakamura T, et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep. 2013;3:2014. https://doi.org/10.1038/srep02014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. He W, Phipps-Green A, Stamp LK, Merriman TR, Dalbeth N. Population-specific association between ABCG2 variants and tophaceous disease in people with gout. Arthritis Res Ther. 2017;19:43. https://doi.org/10.1186/s13075-017-1254-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wallace MC, Roberts RL, Nanavati P, Miner JN, Dalbeth N, Topless R, et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology (Oxford). 2018;57:656–60. https://doi.org/10.1093/rheumatology/kex467.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts RL, Wallace MC, Phipps-Green AJ, Topless R, Drake JM, Tan P, et al. ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. Pharmacogenomics J. 2017;17:201–3. https://doi.org/10.1038/tpj.2015.101.

    Article  CAS  PubMed  Google Scholar 

  36. Takada T, Yamamoto T, Matsuo H, Tan JK, Ooyama K, Sakiyama M, et al. Identification of ABCG2 as an exporter of uremic toxin indoxyl sulfate in mice and as a crucial factor influencing CKD progression. Sci Rep. 2018;8:11147. https://doi.org/10.1038/s41598-018-29208-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohashi Y, Kuriyama S, Nakano T, Sekine M, Toyoda Y, Nakayama A, et al. Urate transporter ABCG2 function and asymptomatic hyperuricemia: a retrospective cohort study of CKD progression. Am J Kidney Dis. 2023;81:134-144.e1. https://doi.org/10.1053/j.ajkd.2022.05.010.

    Article  CAS  PubMed  Google Scholar 

  38. Yokose C, McCormick N, Choi HK. Dietary and lifestyle-centered approach in gout care and prevention. Curr Rheumatol Rep. 2021;23:51. https://doi.org/10.1007/s11926-021-01020-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yokose C, McCormick N, Choi HK. The role of diet in hyperuricemia and gout. Curr Opin Rheumatol. 2021;33:135–44. https://doi.org/10.1097/BOR.0000000000000779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol. 2020;72:879–95. https://doi.org/10.1002/art.41247.

    Article  PubMed  Google Scholar 

  41. Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76:29–42. https://doi.org/10.1136/annrheumdis-2016-209707.

    Article  CAS  PubMed  Google Scholar 

  42. O’Dell JR, Brophy MT, Pillinger MH, Neogi T, Palevsky PM, Wu H, et al. Comparative effectiveness of allopurinol and febuxostat in gout management. NEJM Evid. 2022. https://doi.org/10.1056/evidoa2100028.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Doherty M, Jenkins W, Richardson H, Sarmanova A, Abhishek A, Ashton D, et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet. 2018;20(392):1403–12. https://doi.org/10.1016/S0140-6736(18)32158-5.

    Article  Google Scholar 

  44. Roddy E, Packham J, Obrenovic K, Rivett A, Ledingham JM. Management of gout by UK rheumatologists: a British Society for Rheumatology national audit. Rheumatology (Oxford). 2018;57:826–30. https://doi.org/10.1093/rheumatology/kex521.

    Article  CAS  PubMed  Google Scholar 

  45. Perez Ruiz F, Sanchez-Piedra CA, Sanchez-Costa JT, Andrés M, Diaz-Torne C, Jimenez-Palop M, et al. Improvement in diagnosis and treat-to-target management of hyperuricemia in gout: results from the GEMA-2 transversal study on practice. Rheumatol Ther. 2018;5:243–53. https://doi.org/10.1007/s40744-017-0091-1.

    Article  PubMed  Google Scholar 

  46. Jauffret C, Ottaviani S, Latourte A, Ea HK, Graf S, Lioté F, et al. Simple application and adherence to gout guidelines enables disease control: an observational study in French referral centres. J Clin Med. 2022;11:5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pascart T, Lioté F. Gout: state of the art after a decade of developments. Rheumatology (Oxford). 2019;58(1):27–44. https://doi.org/10.1093/rheumatology/key002.

    Article  CAS  PubMed  Google Scholar 

  48. Rashid N, Coburn BW, Wu YL, Cheetham TC, Curtis JR, Saag KG, et al. Modifiable factors associated with allopurinol adherence and outcomes among patients with gout in an integrated healthcare system. J Rheumatol. 2015;42(3):504–12. https://doi.org/10.3899/jrheum.140588.

    Article  PubMed  Google Scholar 

  49. Teh CL, Cheong YK, Wan SA, Ling GR. Treat-to-target (T2T) of serum urate (SUA) in gout: a clinical audit in real-world gout patients. Reumatismo. 2019;71:154–9. https://doi.org/10.4081/reumatismo.2019.1225.

    Article  CAS  PubMed  Google Scholar 

  50. Sutton SS, Magagnoli J, Cummings TH, Hardin JW. Odds of achieving target serum uric acid levels among gout patients: the role of rurality in outcomes and treatment adherence. J Prim Care Community Health. 2023;14:21501319231167380. https://doi.org/10.1177/21501319231167379.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Edwards NL, Schlesinger N, Clark S, Arndt T, Lipsky PE. Management of gout in the United States: a claims-based analysis. ACR Open Rheumatol. 2020;2:180–7. https://doi.org/10.1002/acr2.11121.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Qaseem A, Harris RP, Forciea MA, Clinical Guidelines Committee of the American College of Physicians, Denberg TD, Barry MJ, et al. Management of acute and recurrent gout: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2017;166:58–68. https://doi.org/10.7326/M16-0570.

    Article  PubMed  Google Scholar 

  53. Dalbeth N, Bardin T, Doherty M, Lioté F, Richette P, Saag KG, et al. Discordant American College of Physicians and international rheumatology guidelines for gout management: consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN). Nat Rev Rheumatol. 2017;13:561–8. https://doi.org/10.1038/nrrheum.2017.126.

    Article  PubMed  Google Scholar 

  54. Dalbeth N, Saag KG, Palmer WE, Choi HK, Hunt B, MacDonald PA, et al. Effects of febuxostat in early gout: a randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 2017;69:2386–95. https://doi.org/10.1002/art.40233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uhlig T, Karoliussen LF, Sexton J, Kvien TK, Haavardsholm EA, Perez-Ruiz F, et al. One- and 2-year flare rates after treat-to-target and tight-control therapy of gout: results from the NOR-Gout study. Arthritis Res Ther. 2022;24:88. https://doi.org/10.1186/s13075-022-02772-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Uhlig T, Karoliussen LF, Sexton J, Borgen T, Haavardsholm EA, Kvien TK, et al. 12-month results from the real-life observational treat-to-target and tight-control therapy NOR-Gout study: achievements of the urate target levels and predictors of obtaining this target. RMD Open. 2021;7: e001628. https://doi.org/10.1136/rmdopen-2021-001628.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dalbeth N, Billington K, Doyle A, Frampton C, Tan P, Aati O, et al. Effects of allopurinol dose escalation on bone erosion and urate volume in gout: a dual-energy computed tomography imaging study within a randomized, Controlled Trial. Arthritis Rheumatol. 2019;71:1739–46. https://doi.org/10.1002/art.40929.

    Article  CAS  PubMed  Google Scholar 

  58. Uhlig T, Eskild T, Karoliussen LF, Sexton J, Kvien TK, Haavardsholm EA, et al. Two-year reduction of dual-energy CT urate depositions during a treat-to-target strategy in gout in the NOR-gout longitudinal study. Rheumatology (Oxford). 2022;61(SI):SI81–5. https://doi.org/10.1093/rheumatology/keab533.

    Article  PubMed  Google Scholar 

  59. Hammer HB, Karoliussen L, Terslev L, Haavardsholm EA, Kvien TK, Uhlig T. Ultrasound shows rapid reduction of crystal depositions during a treat-to-target approach in gout patients: 12-month results from the NOR-Gout study. Ann Rheum Dis. 2020;79:1500–5. https://doi.org/10.1136/annrheumdis-2020-217392.

    Article  PubMed  Google Scholar 

  60. Fogacci F, Borghi C, Di Micoli A, Degli Esposti D, Cicero AFG. Inequalities in enrollment of women and racial minorities in trials testing uric acid lowering drugs. Nutr Metab Cardiovasc Dis. 2021;31:3305–13. https://doi.org/10.1016/j.numecd.2021.09.011.

    Article  PubMed  Google Scholar 

  61. Yokose C, McCormick N, Lu N, Joshi AD, Jackson L, Kohler MJ, et al. Nationwide racial/ethnic disparities in US emergency department visits and hospitalizations for gout. Rheumatology (Oxford). 2023;62:2247–51. https://doi.org/10.1093/rheumatology/keac590.

    Article  PubMed  Google Scholar 

  62. Morillon MB, Stamp L, Taylor W, Fransen J, Dalbeth N, Singh JA, et al. Using serum urate as a validated surrogate end point for flares in patients with gout: protocol for a systematic review and meta-regression analysis. BMJ Open. 2016;6: e012026. https://doi.org/10.1136/bmjopen-2016-012026.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stamp L, Morillon MB, Taylor WJ, Dalbeth N, Singh JA, Lassere M, et al. Serum urate as surrogate endpoint for flares in people with gout: a systematic review and meta-regression analysis. Semin Arthritis Rheum. 2018;48:293–301. https://doi.org/10.1016/j.semarthrit.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

  64. Wei J, Choi HK, Dalbeth N, Lane NE, Wu J, Lyu H, Zeng C, et al. Lowering serum urate with urate-lowering therapy to target and incident fracture among people with gout. Arthritis Rheumatol. 2023;75:1456–65. https://doi.org/10.1002/art.42504.

    Article  CAS  PubMed  Google Scholar 

  65. Mikuls TR. Gout. N Engl J Med. 2022;387:1877–87. https://doi.org/10.1056/NEJMcp2203385.

    Article  PubMed  Google Scholar 

  66. Miner JN, Tan PK, Hyndman D, Liu S, Iverson C, Nanavati P, et al. Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res Ther. 2016;18:214. https://doi.org/10.1186/s13075-016-1107-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Terkeltaub R, Saag KG, Goldfarb DS, Baumgartner S, Schechter BM, Valiyil R, et al. Integrated safety studies of the urate reabsorption inhibitor lesinurad in treatment of gout. Rheumatology (Oxford). 2019;58:61–9. https://doi.org/10.1093/rheumatology/key245.

    Article  CAS  PubMed  Google Scholar 

  68. Tausche AK, Alten R, Dalbeth N, Kopicko J, Fung M, Adler S, et al. Lesinurad monotherapy in gout patients intolerant to a xanthine oxidase inhibitor: a 6 month phase 3 clinical trial and extension study. Rheumatology (Oxford). 2017;56:2170–8. https://doi.org/10.1093/rheumatology/kex350. (PMID: 29029210).

    Article  CAS  PubMed  Google Scholar 

  69. Dalbeth N, Jones G, Terkeltaub R, Khanna D, Kopicko J, Bhakta N, et al. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout: findings of a phase III clinical trial. Arthritis Rheumatol. 2017;69:1903–13. https://doi.org/10.1002/art.40159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dalbeth N, Jones G, Terkeltaub R, Khanna D, Fung M, Baumgartner S, et al. Efficacy and safety during extended treatment of lesinurad in combination with febuxostat in patients with tophaceous gout: CRYSTAL extension study. Arthritis Res Ther. 2019;21:8. https://doi.org/10.1186/s13075-018-1788-4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bardin T, Keenan RT, Khanna PP, Kopicko J, Fung M, Bhakta N, et al. Lesinurad in combination with allopurinol: a randomised, double-blind, placebo-controlled study in patients with gout with inadequate response to standard of care (the multinational CLEAR 2 study). Ann Rheum Dis. 2017;76:811–20. https://doi.org/10.1136/annrheumdis-2016-209213.

    Article  CAS  PubMed  Google Scholar 

  72. Saag KG, Fitz-Patrick D, Kopicko J, Fung M, Bhakta N, Adler S, et al. Lesinurad combined with allopurinol: a randomized, double-blind, placebo-controlled study in gout patients with an inadequate response to standard-of-care allopurinol (a US-based study). Arthritis Rheumatol. 2017;69:203–12. https://doi.org/10.1002/art.39840.

    Article  CAS  PubMed  Google Scholar 

  73. Kelley WN, Wyngaarden JB. Effects of allopurinol and oxipurinol on purine synthesis in cultured human cells. J Clin Invest. 1970;49:602–9. https://doi.org/10.1172/JCI106271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stamp LK, Day RO, Yun J. Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat Rev Rheumatol. 2016;12:235–42. https://doi.org/10.1038/nrrheum.2015.132.

    Article  CAS  PubMed  Google Scholar 

  75. Yun J, Marcaida MJ, Eriksson KK, Jamin H, Fontana S, Pichler WJ, et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J Immunol. 2014;192:2984–93. https://doi.org/10.4049/jimmunol.1302306.

    Article  CAS  PubMed  Google Scholar 

  76. Kim SC, Newcomb C, Margolis D, Roy J, Hennessy S. Severe cutaneous reactions requiring hospitalization in allopurinol initiators: a population-based cohort study. Arthritis Care Res (Hoboken). 2013;65:578–84. https://doi.org/10.1002/acr.21817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sato T, Cheng CL, Park HW, Kao Yang YH, Yang MS, Fujita M, et al. Real-world evidence of population differences in allopurinol-related severe cutaneous adverse reactions in East Asians: a population-based cohort study. Clin Transl Sci. 2021;14(3):1002–14. https://doi.org/10.1111/cts.12964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang CY, Chen CH, Deng ST, Huang CS, Lin YJ, Chen YJ, et al. Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in Taiwan. JAMA Intern Med. 2015;175:1550–7. https://doi.org/10.1001/jamainternmed.2015.3536. (PMID: 26193384).

    Article  PubMed  Google Scholar 

  79. Shim JS, Yun J, Kim MY, Chung SJ, Oh JH, Kang DY, et al. The presence of HLA-B75, DR13 homozygosity, or DR14 additionally increases the risk of allopurinol-induced severe cutaneous adverse reactions in HLA-B*58:01 carriers. J Allergy Clin Immunol Pract. 2019;7:1261–70. https://doi.org/10.1016/j.jaip.2018.11.039.

    Article  PubMed  Google Scholar 

  80. Kim MY, Yun J, Kang DY, Kim TH, Oh MK, Lee S, et al. HLA-A*24:02 increase the risk of allopurinol-induced drug reaction with eosinophilia and systemic symptoms in HLA-B*58:01 carriers in a Korean population; a multicenter cross-sectional case-control study. Clin Transl Allergy. 2022;1: e12193. https://doi.org/10.1002/clt2.12193.

    Article  CAS  Google Scholar 

  81. Liu Y, Wang CW, Chen CB, Yu KH, Wu YJ, Choon SE, et al. DNA methylation of ITGB2 contributes to allopurinol hypersensitivity. Clin Immunol. 2023;248: 109250. https://doi.org/10.1016/j.clim.2023.109250.

    Article  CAS  PubMed  Google Scholar 

  82. Vargas-Santos AB, Neogi T. Management of gout and hyperuricemia in CKD. Am J Kidney Dis. 2017;70:422–39. https://doi.org/10.1053/j.ajkd.2017.01.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Vera MA, Marcotte G, Rai S, Galo JS, Bhole V. Medication adherence in gout: a systematic review. Arthritis Care Res (Hoboken). 2014;66:1551–9. https://doi.org/10.1002/acr.22336.

    Article  PubMed  Google Scholar 

  84. Emad Y, Dalbeth N, Weinman J, Chalder T, Petrie KJ. Why do patients with gout not take allopurinol? J Rheumatol. 2022;49:622–6. https://doi.org/10.3899/jrheum.210950.

    Article  PubMed  Google Scholar 

  85. de Abreu MFS, Wegermann CA, Ceroullo MS, Sant’Anna IGM, Lessa RCS. Ten years milestones in xanthine oxidase inhibitors discovery: febuxostat-based inhibitors trends, bifunctional derivatives, and automatized screening assays. Organics. 2022;3:380–414. https://doi.org/10.3390/org3040026.

    Article  CAS  Google Scholar 

  86. Miyata H, Takada T, Toyoda Y, Matsuo H, Ichida K, Suzuki H. Identification of febuxostat as a new strong ABCG2 inhibitor: potential applications and risks in clinical situations. Front Pharmacol. 2016;7:518. https://doi.org/10.3389/fphar.2016.00518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pisano A, Cernaro V, Gembillo G, D’Arrigo G, Buemi M, Bolignano D. Xanthine oxidase inhibitors for improving renal function in chronic kidney disease patients: an updated systematic review and meta-analysis. Int J Mol Sci. 2017;18:2283. https://doi.org/10.3390/ijms18112283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cicero AFG, Fogacci F, Cincione RI, Tocci G, Borghi C. Clinical effects of xanthine oxidase inhibitors in hyperuricemic patients. Med Princ Pract. 2021;30:122–30. https://doi.org/10.1159/000512178.

    Article  PubMed  Google Scholar 

  89. Bignardi PR, Ido DH, Garcia FAL, Braga LM, Delfino VDA. Does uric acid-lowering treatment slow the progression of chronic kidney disease? A meta-analysis of randomized controlled trials. Nefrologia (Engl Ed). 2022;S2013–2514(22):00177–8. https://doi.org/10.1016/j.nefroe.2022.04.005.

    Article  Google Scholar 

  90. White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378:1200–10. https://doi.org/10.1056/NEJMoa1710895.

    Article  CAS  PubMed  Google Scholar 

  91. Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R. New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol. 2018;70:1702–9. https://doi.org/10.1002/art.40583.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mackenzie IS, Ford I, Nuki G, Hallas J, Hawkey CJ, Webster J, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396:1745–57. https://doi.org/10.1016/S0140-6736(20)32234-0.

    Article  CAS  PubMed  Google Scholar 

  93. Choi HK, Neogi T, Stamp LK, Terkeltaub R, Dalbeth N. Reassessing the cardiovascular safety of febuxostat: implications of the febuxostat versus allopurinol streamlined trial. Arthritis Rheumatol. 2021;73:721–4. https://doi.org/10.1002/art.41638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Krishnan E, Chen L. Trends in physician diagnosed gout and gout therapies in the US: results from the national ambulatory health care surveys 1993 to 2009. Arthritis Res Ther. 2013;15:R181. https://doi.org/10.1186/ar4370.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pui K, Gow PJ, Dalbeth N. Efficacy and tolerability of probenecid as urate-lowering therapy in gout; clinical experience in high-prevalence population. J Rheumatol. 2013;40:872–6. https://doi.org/10.3899/jrheum.121301.

    Article  CAS  PubMed  Google Scholar 

  96. Granados JC, Bhatnagar V, Nigam SK. Blockade of organic anion transport in humans after treatment with the drug probenecid leads to major metabolic alterations in plasma and urine. Clin Pharmacol Ther. 2022;112:653–64. https://doi.org/10.1002/cpt.2630.

    Article  CAS  PubMed  Google Scholar 

  97. Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7:4939. https://doi.org/10.1038/s41598-017-04949-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sherman MR, Saifer MG, Perez-Ruiz F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev. 2008;60:59–68. https://doi.org/10.1016/j.addr.2007.06.011.

    Article  CAS  PubMed  Google Scholar 

  99. Sundy JS, Baraf HS, Yood RA, Edwards NL, Gutierrez-Urena SR, Treadwell EL, et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment two randomized controlled trials. JAMA. 2011;306:711–20. https://doi.org/10.1001/jama.2011.1169.

    Article  CAS  PubMed  Google Scholar 

  100. Botson JK, Tesser JRP, Bennett R, Kenney HM, Peloso PM, Obermeyer K, et al. Pegloticase in combination with methotrexate in patients with uncontrolled gout: a multicenter, open-label study (MIRROR). J Rheumatol. 2021;48:767–74. https://doi.org/10.3899/jrheum.200460.

    Article  CAS  PubMed  Google Scholar 

  101. Botson JK, Saag K, Peterson J, Obermeyer K, **n Y, LaMoreaux B, et al. A randomized, double-blind, placebo-controlled multicenter efficacy and safety study of methotrexate to increase response rates in patients with uncontrolled gout receiving pegloticase: 12-month findings. ACR Open Rheumatol. 2023. https://doi.org/10.1002/acr2.11578.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Botson JK, Obermeyer K, LaMoreaux B, Zhao L, Weinblatt ME, Peterson J. Improved joint and patient-reported health assessments with pegloticase plus methotrexate co-therapy in patients with uncontrolled gout: 12-month exploratory outcomes of the MIRROR open-label trial. Arthritis Res Ther. 2022;24:281. https://doi.org/10.1186/s13075-022-02979-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dalbeth N, Becce F, Botson JK, Zhao L, Kumar A. Dual-energy CT assessment of rapid monosodium urate depletion and bone erosion remodelling during pegloticase plus methotrexate co-therapy. Rheumatology (Oxford). 2022;61:4898–904. https://doi.org/10.1093/rheumatology/keac173.

    Article  PubMed  Google Scholar 

  104. Li Z, Shen L, Ma A, Talkington A, Li Z, Nyborg AC, Bowers MS, LaMoreaux B, et al. Pegloticase co-administered with high MW polyethylene glycol effectively reduces PEG-immunogenicity and restores prolonged circulation in mouse. Acta Biomater. 2023;S1742–7061(23):00516. https://doi.org/10.1016/j.actbio.2023.08.052.

    Article  CAS  Google Scholar 

  105. Keenan RT, Baraf HSB, LaMoreaux B. Use of pre-infusion serum uric acid levels as a biomarker for infusion reaction risk in patients on pegloticase. Rheumatol Ther. 2019;6:299–304. https://doi.org/10.1007/s40744-019-0151-9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Khanna PP, Khanna D, Cutter G, Foster J, Melnick J, Jaafar S, et al. Reducing immunogenicity of pegloticase with concomitant use of mycophenolate Mofetil in patients with refractory gout: a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2021;73:1523–32. https://doi.org/10.1002/art.41731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hershfield MS, Ganson NJ, Kelly SJ, Scarlett EL, Jaggers DA, Sundy JS. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res Ther. 2014;16:R63. https://doi.org/10.1186/ar4500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abdellatif A, Zhao L, Chamberlain J, Cherny K, **n Y, Marder BA, et al. Pegloticase efficacy and safety in kidney transplant recipients; results of the phase IV, open-label PROTECT clinical trial. Clin Transplant. 2023. https://doi.org/10.1111/ctr.14993.

    Article  PubMed  Google Scholar 

  109. Keenan RT, Botson JK, Masri KR, Padnick-Silver L, LaMoreaux B, Albert JA, et al. The effect of immunomodulators on the efficacy and tolerability of pegloticase: a systematic review. Semin Arthritis Rheum. 2021;51:347–52. https://doi.org/10.1016/j.semarthrit.2021.01.005.

    Article  CAS  PubMed  Google Scholar 

  110. Masri KR, Padnick-Silver L, Winterling K, LaMoreaux B. Effect of leflunomide on pegloticase response rate in patients with uncontrolled gout: a retrospective study. Rheumatol Ther. 2022;9:555–63. https://doi.org/10.1007/s40744-021-00421-w.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Conley B, Bunzli S, Bullen J, O’Brien P, Persaud J, Gunatillake T, et al. What are the core recommendations for gout management in first line and specialist care? Systematic review of clinical practice guidelines. BMC Rheumatol. 2023;7:15. https://doi.org/10.1186/s41927-023-00335-w.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Banerjee M, Pal R, Maisnam I, Chowdhury S, Mukhopadhyay S. Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout: a meta-analysis and meta-regression of randomized controlled trials. Diabetes Obes Metab. 2023. https://doi.org/10.1111/dom.15157.

    Article  PubMed  Google Scholar 

  113. McCormick N, Yokose C, Wei J, Na L, Wexler DJ, Wexler DJ, et al. Comparative effectiveness of sodium-glucose cotransporter-2 inhibitors for recurrent gout flares and gout-primary emergency department visits and hospitalizations a general population cohort study. Ann Int Med. 2023. https://doi.org/10.7326/M23-0724.

    Article  PubMed  Google Scholar 

  114. Wei J, Choi HK, Dalbeth N, Li X, Li C, Zeng C, et al. Gout flares and mortality after sodium-glucose cotransporter-2 inhibitor treatment for gout and type 2 diabetes. JAMA Netw Open. 2023;6: e2330885. https://doi.org/10.1001/jamanetworkopen.2023.30885.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C, et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol. 2019;316:F173–85. https://doi.org/10.1152/ajprenal.00462.2018.

    Article  CAS  PubMed  Google Scholar 

  116. Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, et al. β-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 2017;18:2077–87. https://doi.org/10.1016/j.celrep.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21:263–9. https://doi.org/10.1038/nm.3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stack AG, Han D, Goldwater R, Johansson S, Dronamraju N, Oscarsson J, et al. Dapagliflozin added to verinurad plus febuxostat further reduces serum uric acid in hyperuricemia: the QUARTZ study. J Clin Endocrinol Metab. 2021;106:e2347–56. https://doi.org/10.1210/clinem/dgaa748.

    Article  PubMed  Google Scholar 

  119. Stamp LK, Haslett J, Frampton C, White D, Gardner D, Stebbings S, et al. The safety and efficacy of benzbromarone in gout in Aotearoa New Zealand. Intern Med J. 2016;46:1075–80. https://doi.org/10.1111/imj.13173.

    Article  CAS  PubMed  Google Scholar 

  120. Li S, Yang H, Guo Y, Wei F, Yang X, Li D, et al. Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia: a systematic review and network meta-analysis. Sci Rep. 2016;6:33082. https://doi.org/10.1038/srep33082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li YJ, Chen LR, Yang ZL, Wang P, Jiang FF, Guo Y, et al. Comparative efficacy and safety of uricosuric agents in the treatment of gout or hyperuricemia: a systematic review and network meta-analysis. Clin Rheumatol. 2023;42:215–24. https://doi.org/10.1007/s10067-022-06356-z.

    Article  PubMed  Google Scholar 

  122. Azevedo VF, Kos IA, Vargas-Santos AB, da Rocha Castelar Pinheiro G, Dos Santos PE. Benzbromarone in the treatment of gout. Adv Rheumatol. 2019;59:37. https://doi.org/10.1186/s42358-019-0080-x.

    Article  PubMed  Google Scholar 

  123. Yan F, Xue X, Lu J, Dalbeth N, Qi H, Yu Q, et al. Superiority of low-dose benzbromarone to low-dose febuxostat in a prospective, randomized comparative effectiveness trial in gout patients with renal uric acid underexcretion. Arthritis Rheumatol. 2022;74:2015–23. https://doi.org/10.1002/art.42266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lai SW, Liao KF, Kuo YH, Hwang BF, Liu CS. Comparison of benzbromarone and allopurinol on the risk of chronic kidney disease in people with asymptomatic hyperuricemia. Eur J Intern Med. 2023;113:91–7. https://doi.org/10.1016/j.ejim.2023.04.025.

    Article  CAS  PubMed  Google Scholar 

  125. Roberts RL, Wallace MC, Wright DF, Cadzow M, Dalbeth N, Jones PB, et al. Frequency of CYP2C9 polymorphisms in Polynesian people and potential relevance to management of gout with benzbromarone. Joint Bone Spine. 2014;81:160–3. https://doi.org/10.1016/j.jbspin.2013.07.006.

    Article  CAS  PubMed  Google Scholar 

  126. Wang H, Peng Y, Zhang T, Lan Q, Zhao H, Wang W, et al. Metabolic epoxidation is a critical step for the development of benzbromarone-induced hepatotoxicity. Drug Metab Dispos. 2017;45:1354–63. https://doi.org/10.1124/dmd.117.077818.

    Article  CAS  PubMed  Google Scholar 

  127. Tang LWT, Verma RK, Fan H, Chan ECY. Mechanism-based inactivation of cytochrome P450 3A4 by benzbromarone. Mol Pharmacol. 2021;99:266–76. https://doi.org/10.1124/molpharm.120.000086.

    Article  CAS  PubMed  Google Scholar 

  128. Uda J, Kobashi S, Miyata S, Ashizawa N, Matsumoto K, Iwanaga T. Discovery of Dotinurad (FYU-981), a new phenol derivative with highly potent uric acid lowering activity. ACS Med Chem Lett. 2020;15(11):2017–23. https://doi.org/10.1021/acsmedchemlett.0c00176.

    Article  CAS  Google Scholar 

  129. Ishikawa T, Takahashi T, Taniguchi T, Hosoya T. Dotinurad: a novel selective urate reabsorption inhibitor for the treatment of hyperuricemia and gout. Expert Opin Pharmacother. 2021;22:1397–406. https://doi.org/10.1080/14656566.2021.1918102.

    Article  CAS  PubMed  Google Scholar 

  130. Iqbal A, Iqbal K, Farid E, Ishaque A, Hasanain M, Bin Arif T, et al. Efficacy and safety of dotinurad in hyperuricemic patients with or without gout: a systematic review and meta-analysis of randomized controlled trials. Cureus. 2021;13: e14428. https://doi.org/10.7759/cureus.14428.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hosoya T, Furuno K, Kanda S. A non-inferiority study of the novel selective urate reabsorption inhibitor dotinurad versus febuxostat in hyperuricemic patients with or without gout. Clin Exp Nephrol. 2020;24(Suppl 1):71–9. https://doi.org/10.1007/s10157-020-01851-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee YH, Song GG. Comparative efficacy and safety of dotinurad, febuxostat, and benzbromarone in hyperuricemic patients with or without gout: a network meta-analysis of randomized controlled trials. Int J Clin Pharmacol Ther. 2022;60:159–66. https://doi.org/10.5414/CP204097.

    Article  CAS  PubMed  Google Scholar 

  133. Hosoya T, Sano T, Sasaki T, Fushimi M, Ohashi T. Dotinurad versus benzbromarone in Japanese hyperuricemic patient with or without gout: a randomized, double-blind, parallel-group, phase 3 study. Clin Exp Nephrol. 2020;24(Suppl 1):62–70. https://doi.org/10.1007/s10157-020-01849-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hosoya T, Fushimi M, Okui D, Sasaki T, Ohashi T. Open-label study of long-term administration of dotinurad in Japanese hyperuricemic patients with or without gout. Clin Exp Nephrol. 2020;24(Suppl 1):80–91. https://doi.org/10.1007/s10157-019-01831-5.

    Article  CAS  PubMed  Google Scholar 

  135. Takahashi T, Beppu T, Hidaka Y, Hosoya T. Uric acid-lowering effect of dotinurad, a novel selective urate reabsorption inhibitor, in hypertensive patients with gout or asymptomatic hyperuricemia: a pooled analysis of individual participant data in phase II and III trials. Clin Exp Hypertens. 2021;43:730–41. https://doi.org/10.1080/10641963.2021.1950752.

    Article  CAS  PubMed  Google Scholar 

  136. Takahashi T, Beppu T, Hidaka Y, Hosoya T. Comparative study of a novel selective urate reabsorption inhibitor “dotinurad” among patient groups with different stages of renal dysfunction. Clin Exp Nephrol. 2021;25:1336–45. https://doi.org/10.1007/s10157-021-02115-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee YH, Song GG. Comparative efficacy and safety of topiroxostat at different dosages in hyperuricemic patients with or without gout: a network meta-analysis of randomized controlled trials. Int J Clin Pharmacol Ther. 2022;60:176–83. https://doi.org/10.5414/CP204108.

    Article  CAS  PubMed  Google Scholar 

  138. Ishikawa T, Maeda T, Hashimoto T, Nakagawa T, Ichikawa K, Sato Y, et al. Long-term safety and effectiveness of the xanthine oxidoreductase inhibitor, topiroxostat in Japanese hyperuricemic patients with or without gout: a 54-week open-label, multicenter, post-marketing observational study. Clin Drug Investig. 2020;40:847–59. https://doi.org/10.1007/s40261-020-00941-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hosoya T, Ogawa Y, Hashimoto H, Ohashi T, Sakamoto R. Comparison of topiroxostat and allopurinol in Japanese hyperuricemic patients with or without gout: a phase 3, multicentre, randomized, double-blind, double-dummy, active-controlled, parallel-group study. J Clin Pharm Ther. 2016;41:290–7. https://doi.org/10.1111/jcpt.12391.

    Article  CAS  PubMed  Google Scholar 

  140. Horino T, Hatakeyama Y, Ichii O, Matsumoto T, Shimamura Y, Inoue K, et al. Effects of topiroxostat in hyperuricemic patients with chronic kidney disease. Clin Exp Nephrol. 2018;22:337–45. https://doi.org/10.1007/s10157-017-1452-3.

    Article  CAS  PubMed  Google Scholar 

  141. Hosoya T, Ohno I, Nomura S, Hisatome I, Uchida S, Fujimori S, et al. Effects of topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic kidney disease patients with or without gout. Clin Exp Nephrol. 2014;18:876–84. https://doi.org/10.1007/s10157-014-0935-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mizukoshi T, Kato S, Ando M, Sobajima H, Ohashi N, Naruse T, et al. Renoprotective effects of topiroxostat for Hyperuricaemic patients with overt diabetic nephropathy study (ETUDE study): a prospective, randomized, multicentre clinical trial. Nephrology (Carlton). 2018;23:1023–30. https://doi.org/10.1111/nep.13177.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang Y, Fukusumi Y, Kayaba M, Nakamura T, Sakamoto R, Ashizawa N, et al. Xanthine oxidoreductase inhibitor topiroxostat ameliorates podocyte injury by inhibiting the reduction of nephrin and podoplanin. Nefrologia (Engl Ed). 2021;41:539–47. https://doi.org/10.1016/j.nefroe.2021.11.007.

    Article  PubMed  Google Scholar 

  144. Wu H, Wang Y, Li YL, Huang JJ, Lin ZJ, Zhang B. Current status and trends for natural products on hyperuricemia research: a scientometric visualization analysis from 2000 to 2021. Eur Rev Med Pharmacol Sci. 2023;27:2832–44. https://doi.org/10.26355/eurrev_202304_31914. (PMID: 37070883).

    Article  CAS  PubMed  Google Scholar 

  145. Wu Y, Li M, Shen J, Pu X, Guo Y. A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints. Mol Divers. 2023. https://doi.org/10.1007/s11030-023-10649-z.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhou S, Huang G. The inhibitory activity of natural products to xanthine oxidase. Chem Biodivers. 2023;20(5): e202300005. https://doi.org/10.1002/cbdv.202300005.

    Article  CAS  PubMed  Google Scholar 

  147. Terkeltaub R, Lee J, Min J, Shin S, Saag KG. Serum urate-lowering efficacy and safety of tigulixostat in gout patients with hyperuricemia: a randomized, double-blind, placebo-controlled, Dose-Finding Trial. Arthritis Rheumatol. 2023;75:1275–84. https://doi.org/10.1002/art.42447.

    Article  CAS  PubMed  Google Scholar 

  148. Bakris GL, Mikami H, Hirata M, Nakajima A, Cressman MD. A non-purine xanthine oxidoreductase inhibitor reduces albuminuria in patients with DKD: a randomized controlled trial. Kidney360. 2021;2:1240–50. https://doi.org/10.34067/KID.0001672021.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hirano M, Kobayashi S, Miyayama E, Ohta T, Yamamoto M, Yamakawa T. Safety, pharmacokinetics and pharmacodynamics of NC-2500, a novel xanthine oxidoreductase inhibitor, in healthy volunteers. Arthritis Rheumatol. 2018; 70(suppl 9). Abstract.

  150. Yang X, Huang X, Tian Z, Wang P, Penghui L, Zhang J. Establishment of a novel hyperuricemia animal model using mice and assessment of hyporuricemia action of PNP inhibitor Ulodesine. Chin Pharmacol Bull. 2017;12:883–6.

    Google Scholar 

  151. Leask MP, Sumpter NA, Lupi AS, Vazquez AI, Reynolds RJ, Mount DB, et al. The shared genetic basis of hyperuricemia, gout, and kidney function. Semin Nephrol. 2020;40:586–99. https://doi.org/10.1016/j.semnephrol.2020.12.002.

    Article  CAS  PubMed  Google Scholar 

  152. Halperin Kuhns VL, Woodward OM. Urate transport in health and disease. Best Pract Res Clin Rheumatol. 2021;35: 101717. https://doi.org/10.1016/j.berh.2021.101717.

    Article  PubMed  PubMed Central  Google Scholar 

  153. García-Nieto VM, Claverie-Martín F, Moraleda-Mesa T, Perdomo-Ramírez A, Tejera-Carreño P, Cordoba-Lanus E, et al. Gout associated with reduced renal excretion of uric acid. Renal tubular disorder that nephrologists do not treat. Nefrologia (Engl Ed). 2022;42:273–9. https://doi.org/10.1016/j.nefroe.2022.05.007.

    Article  PubMed  Google Scholar 

  154. Chen Y, You R, Wang K, Wang Y. Recent updates of natural and synthetic URAT1 inhibitors and novel screening methods. Evid Based Complement Alternat Med. 2021. https://doi.org/10.1155/2021/5738900.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Yang B, **n M, Liang S, Xu X, Cai T, Dong L, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds. Front Pharmacol. 2022;13:1026246. https://doi.org/10.3389/fphar.2022.1026246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yuan Q, Cheng Y, Sheng R, Yuan Y, Hu M. A brief review of natural products with urate transporter 1 inhibition for the treatment of hyperuricemia. Evid Based Complement Altern Med. 2022. https://doi.org/10.1155/2022/5419890.

    Article  Google Scholar 

  157. Piani F, Agnoletti D, Borghi C. Advances in pharmacotherapies for hyperuricemia. Expert Opin Pharmacother. 2023;24:737–45. https://doi.org/10.1080/14656566.2023.2197591.

    Article  CAS  PubMed  Google Scholar 

  158. Jenkins C, Hwang JH, Kopp JB, Winkler CA, Cho SK. Review of urate-lowering therapeutics: from the past to the future. Front Pharmacol. 2022;13: 925219. https://doi.org/10.3389/fphar.2022.925219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tan PK, Ostertag TM, Miner JN. Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci Rep. 2016;6:34995. https://doi.org/10.1038/srep34995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tan PK, Liu S, Gunic E, Miner JN. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci Rep. 2017;7:665. https://doi.org/10.1038/s41598-017-00706-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen X, Zhao Z, Luo J, Wu T, Shen Y, Chang S, et al. Novel natural scaffold as hURAT1 inhibitor identified by 3D-shape-based, docking-based virtual screening approach and biological evaluation. Bioorg Chem. 2021;117: 105444. https://doi.org/10.1016/j.bioorg.2021.105444.

    Article  CAS  PubMed  Google Scholar 

  162. Dua P, Gurrell R, Kirby S, Sudworth M, Loudon PT. Acute kidney injury observed during phase 1 clinical trials of a novel xanthine oxidase/URAT1 dual inhibitor PF-06743649. Clin Rheumatol. 2016;35:2045–51. https://doi.org/10.1007/s10067-016-3273-2.

    Article  PubMed  Google Scholar 

  163. Hosoyamada M. Hypothetical mechanism of exercise-induced acute kidney injury associated with renal hypouricemia. Biomedicines. 2021;6(9):1847. https://doi.org/10.3390/biomedicines9121847.

    Article  CAS  Google Scholar 

  164. Shen H, Feng C, ** X, Mao J, Fu H, Gu W, et al. Recurrent exercise-induced acute kidney injury by idiopathic renal hypouricemia with a novel mutation in the SLC2A9 gene and literature review. BMC Pediatr. 2014;14(14):73. https://doi.org/10.1186/1471-2431-14-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yanai H, Katsuyama H, Hakoshima M, Adachi H. Urate transporter 1 can be a therapeutic target molecule for chronic kidney disease and diabetic kidney disease: a retrospective longitudinal study. Biomedicines. 2023;11:567. https://doi.org/10.3390/biomedicines11020567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fitz-Patrick D, Roberson K, Niwa K, Fujimura T, Mori K, Hall J, et al. Safety and efficacy of verinurad, a selective URAT1 inhibitor, for the treatment of patients with gout and/or asymptomatic hyperuricemia in the United States and Japan: Findings from two phase II trials. Mod Rheumatol. 2019;29:1042–52. https://doi.org/10.1080/14397595.2018.1538003.

    Article  CAS  PubMed  Google Scholar 

  167. Fleischmann R, Winkle P, Hall J, Valdez S, Liu S, Yan X, et al. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with febuxostat in adults with gout: a phase IIa, open-label study. RMD Open. 2018;4: e000647. https://doi.org/10.1136/rmdopen-2018-000647.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Dalbeth N, Doyle AJ, Billington K, Gamble GD, Tan P, Latto K, et al. Intensive serum urate lowering with oral urate-lowering therapy for erosive gout: a randomized double-blind controlled trial. Arthritis Rheumatol. 2022;74:1059–69. https://doi.org/10.1002/art.42055.

    Article  CAS  PubMed  Google Scholar 

  169. Jansen TL, Tanja G, Matthijs J. A historical journey of searching for uricosuric drugs. Clin Rheumatol. 2022;41:297–305.

    Article  PubMed  Google Scholar 

  170. Wei JCC, Fleischmann RM, Morris S, Polvent E, Shen Z, Clouser Roche A, et al. A 12-week, randomized, double-blinded, placebo-controlled, phase 2b study of safety, tolerability and efficacy of AR882 in gout patients. Ann Rheum Dis. 2023;82(Suppl. 1):OP0295. https://doi.org/10.1136/annrheumdis-2023-eular.3251. (Abstract).

    Article  Google Scholar 

  171. Gurwith M, Smith D, Bird P, Leung J, Bloch M, Kim J, et al. A Double-blind, placebo-controlled, ascending dose phase 2a study of ABP-671, a novel, potent and selective URAT1 inhibitor, in patients with gout or hyperuricemia. Arthritis Rheumatol. 2022; 74 (suppl 9). Abstract.

  172. Lee HA, Yu KS, Park SI, Yoon S, Onohara M, Ahn Y, et al. URC102, a potent and selective inhibitor of hURAT1, reduced serum uric acid in healthy volunteers. Rheumatology (Oxford). 2019;58:1976–84. https://doi.org/10.1093/rheumatology/kez140.

    Article  CAS  PubMed  Google Scholar 

  173. Lin Y, Chen X, Ding H, Ye P, Gu J, Wang X, et al. Efficacy and safety of a selective URAT1 inhibitor SHR4640 in Chinese subjects with hyperuricaemia: a randomized controlled phase II study. Rheumatology (Oxford). 2021;60:5089–97. https://doi.org/10.1093/rheumatology/keab198.

    Article  CAS  PubMed  Google Scholar 

  174. Tang H, Cui B, Chen Y, Chen L, Wang Z, Zhang N, et al. Safety and efficacy of SHR4640 combined with febuxostat for primary hyperuricemia: a multicenter, randomized, double-blind, phase II study. Ther Adv Musculoskelet Dis. 2022;14:1759720X211067304. https://doi.org/10.1177/1759720X211067304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang Z, Li X, ** Y, Liu R, Di X, Zhou Y, et al. Safety, efficacy, and pharmacokinetics of HP501 in healthy volunteers and hyperuricemic patients: a phase I/IIa study. J Clin Endocrinol Metab. 2022;107:1667–78. https://doi.org/10.1210/clinem/dgac032.

    Article  PubMed  Google Scholar 

  176. Hirano MMT, Hirai T, Jutabha P, Anzai N, Horie T, Endou H., et al. A novel potent and selective urate transporter 1 inhibitor, NC-2700, with pH-raising effect on low urinary pH. Arthritis Rheumatol. 2018; 70(Suppl. 10). Abstract.

  177. Shiramoto M, Liu S, Shen Z, Yan X, Yamamoto A, Gillen M, Ito Y, Hall J. Verinurad combined with febuxostat in Japanese adults with gout or asymptomatic hyperuricaemia: a phase 2a, open-label study. Rheumatology (Oxford). 2018;57:1602–10. https://doi.org/10.1093/rheumatology/key100.

    Article  CAS  PubMed  Google Scholar 

  178. Fleischmann R, Winkle P, Miner JN, Yan X, Hicks L, Valdez S, et al. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with allopurinol in adults with gout: a phase IIa, open-label study. RMD Open. 2018;4: e000584. https://doi.org/10.1136/rmdopen-2017-000584.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Stack AG, Dronamraju N, Parkinson J, Johansson S, Johnsson E, Erlandsson F, et al. Effect of intensive urate lowering with combined verinurad and febuxostat on albuminuria in patients with type 2 diabetes: a randomized trial. Am J Kidney Dis. 2021;77:481–9. https://doi.org/10.1053/j.ajkd.2020.09.009.

    Article  CAS  PubMed  Google Scholar 

  180. Zhao Z, Liu J, Kuang P, Luo J, Surineni G, Cen X, et al. Discovery of novel verinurad analogs as dual inhibitors of URAT1 and GLUT9 with improved druggability for the treatment of hyperuricemia. Eur J Med Chem. 2022;229: 114092. https://doi.org/10.1016/j.ejmech.2021.114092.

    Article  CAS  PubMed  Google Scholar 

  181. Zhao ZA, Jiang Y, Chen YY, Wu T, Lan QS, Li YM, et al. CDER167, a dual inhibitor of URAT1 and GLUT9, is a novel and potent uricosuric candidate for the treatment of hyperuricemia. Acta Pharmacol Sin. 2022;43:121–32. https://doi.org/10.1038/s41401-021-00640-5.

    Article  CAS  PubMed  Google Scholar 

  182. McWherter C, Choi YJ, Serrano RL, Mahata SK, Terkeltaub R, Liu-Bryan R. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMP-activated protein kinase (AMPK) signaling. Arthritis Res Ther. 2018;20:204. https://doi.org/10.1186/s13075-018-1699-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Poiley J, Steinberg AS, Choi YJ, Davis CS, Martin RL, McWherter CA, et al. A randomized, double-blind, active-and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol. 2016;68:2027–34. https://doi.org/10.1002/art.39684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mandal AK, Mercado A, Foster A, Zandi-Nejad K, Mount DB. Uricosuric targets of tranilast. Pharmacol Res Perspect. 2017;5: e00291. https://doi.org/10.1002/prp2.291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nyborg AC, Ward C, Zacco A, Chacko B, Grinberg L, Geoghegan JC, et al. A therapeutic uricase with reduced immunogenicity risk and improved development properties. PLoS One. 2016;11:e0167935. https://doi.org/10.1371/journal.pone.0167935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sands E, Kivitz A, DeHaan W, Leung SS, Johnston L, Kishimoto TK. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. Nat Commun. 2022;13:272. https://doi.org/10.1038/s41467-021-27945-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kivitz A, DeHaan W, Azeem R, Park J, Rhodes S, Inshaw J, et al. Phase 2 dose-finding study in patients with gout using SEL-212, a novel PEGylated uricase (SEL-037) combined with tolerogenic nanoparticles (SEL-110). Rheumatol Ther. 2023;10:825–47. https://doi.org/10.1007/s40744-023-00546-0.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kishimoto TK. Development of ImmTOR Tolerogenic nanoparticles for the mitigation of anti-drug antibodies. Front Immunol. 2020;11:969. https://doi.org/10.3389/fimmu.2020.00969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kishimoto TK, Maldonado RA. Nanoparticles for the induction of antigen-specific immunological tolerance. Front Immunol. 2018;9:230. https://doi.org/10.3389/fimmu.2018.00230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Baraf HSB, Khanna PP, Kivitz AJ, Strand V, Choi HK, Terkeltaub R, et al. The COMPARE head-to-head, randomised-controlled trial of SEL-212 (pegadricase plus rapamycin-containing nanoparticle, ImmTOR™) versus pegloticase for refractory gout. Rheumatology (Oxford). 2023. https://doi.org/10.1093/rheumatology/kead333.

    Article  PubMed  Google Scholar 

  191. Baraf HSB, Kivitz A, Rhodes S, Leung S, Folarin O, Gonzalez-Rivera T, et al. LB0002 safety & efficacy of sel-212 in patients with gout refractory to conventional treatment: outcomes from two randomized, double blind, placebo-controlled, multicenter phase iii studies. Ann Rheum Dis. 2023;82:200–1 (Abstract).

    Google Scholar 

  192. Hyndman D, Liu S, Miner JN. Urate handling in the human body. Curr Rheumatol Rep. 2016;18:34. https://doi.org/10.1007/s11926-016-0587-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tong S, Zhang P, Cheng Q, Chen M, Chen X, Wang Z, et al. The role of gut microbiota in gout: is gut microbiota a potential target for gout treatment. Front Cell Infect Microbiol. 2022;12:1051682. https://doi.org/10.3389/fcimb.2022.1051682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhao H, Lu Z, Lu Y. The potential of probiotics in the amelioration of hyperuricemia. Food Funct. 2022;13:2394–414. https://doi.org/10.1039/d1fo03206b.

    Article  CAS  PubMed  Google Scholar 

  195. Chu Y, Sun S, Huang Y, Gao Q, **e X, Wang P, et al. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes. 2021;7:66. https://doi.org/10.1038/s41522-021-00235-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hou T, Dai H, Wang Q, Hou Y, Zhang X, Lin H, et al. Dissecting the causal effect between gut microbiota, DHA, and urate metabolism: a large-scale bidirectional Mendelian randomization. Front Immunol. 2023;14:1148591. https://doi.org/10.3389/fimmu.2023.1148591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ul-Haq A, Lee KA, Seo H, Kim S, Jo S, Ko KM, et al. Characteristic alterations of gut microbiota in uncontrolled gout. J Microbiol. 2022;60:1178–90. https://doi.org/10.1007/s12275-022-2416-1.

    Article  CAS  PubMed  Google Scholar 

  198. Kim HW, Yoon EJ, Jeong SH, Park MC. Distinct gut microbiota in patients with asymptomatic hyperuricemia: a potential protector against gout development. Yonsei Med J. 2022;63:241–51. https://doi.org/10.3349/ymj.2022.63.3.241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wei J, Zhang Y, Dalbeth N, Terkeltaub R, Yang T, Wang Y, et al. Association between gut microbiota and elevated serum urate in two independent cohorts. Arthritis Rheumatol. 2022;74:682–91. https://doi.org/10.1002/art.42009.

    Article  CAS  PubMed  Google Scholar 

  200. Méndez-Salazar EO, Vázquez-Mellado J, Casimiro-Soriguer CS, Dopazo J, Çubuk C, Zamudio-Cuevas Y, et al. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med. 2021;27:50. https://doi.org/10.1186/s10020-021-00311-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang Z, Li Y, Liao W, Huang J, Liu Y, Li Z, Tang J. Gut microbiota remodeling: a promising therapeutic strategy to confront hyperuricemia and gout. Front Cell Infect Microbiol. 2022;12: 935723. https://doi.org/10.3389/fcimb.2022.935723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang H, Mei L, Deng Y, Liu Y, Wei X, Liu M, et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition. 2019;62:63–73. https://doi.org/10.1016/j.nut.2018.11.018.

    Article  CAS  PubMed  Google Scholar 

  203. Gibson T, Rodgers AV, Simmonds HA, Toseland P. Beer drinking and its effect on uric acid. Br J Rheumatol. 1984;23:203–9. https://doi.org/10.1093/rheumatology/23.3.203.

    Article  CAS  PubMed  Google Scholar 

  204. Mahor D, Priyanka A, Prasad GS, Thakur KG. Functional and structural characterization of purine nucleoside phosphorylase from Kluyveromyces lactis and its potential applications in reducing purine content in food. PLoS One. 2016;11: e0164279. https://doi.org/10.1371/journal.pone.0164279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kasahara K, Kerby RL, Zhang Q, Pradhan M, Mehrabian M, Lusis AJ, et al. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe. 2023;31:1038-1053.e10. https://doi.org/10.1016/j.chom.2023.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu YJ, Jarman B, Low YS, Huang S, Chen H, DeFeo ME, et al. A widely distributed gene cluster compensates for uricase loss in hominids. Cell. 2023;186:3400–13. https://doi.org/10.1016/j.cell.2023.06.010.

    Article  CAS  PubMed  Google Scholar 

  207. Li Y, Zhu J, Lin G, Gao K, Yu Y, Chen S, et al. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats. Front Nutr. 2022;9: 993951. https://doi.org/10.3389/fnut.2022.993951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lin X, Wang M, He Z, Hao G. Gut microbiota mediated the therapeutic efficiency of Simiao decoction in the treatment of gout arthritis mice. BMC Complement Med Ther. 2023;23(1):206. https://doi.org/10.1186/s12906-023-04042-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chien CY, Chien YJ, Lin YH, Lin YH, Chan ST, Hu WC, et al. Supplementation of Lactobacillus plantarum (TCI227) prevented potassium-oxonate-induced hyperuricemia in rats. Nutrients. 2022;15(14):4832. https://doi.org/10.3390/nu14224832.

    Article  CAS  Google Scholar 

  210. Cao J, Liu Q, Hao H, Bu Y, Tian X, Wang T, et al. Lactobacillus Paracasei X11 ameliorates hyperuricemia and modulates gut microbiota in mice. Front Immunol. 2022;13: 940228. https://doi.org/10.3389/fimmu.2022.940228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lee Y, Kim N, Werlinger P, Suh DA, Lee H, Cho JH, Cheng J. Probiotic characterization of Lactobacillus brevis MJM60390 and in vivo assessment of its antihyperuricemic activity. J Med Food. 2022;25:367–80. https://doi.org/10.1089/jmf.2021.K.0171.

    Article  CAS  PubMed  Google Scholar 

  212. Tong Y, Wei Y, Ju Y, Li P, Zhang Y, Li L, et al. Anaerobic purinolytic enzymes enable dietary purine clearance by engineered gut bacteria. Cell Chem Biol. 2023;S2451–9456(23):00115. https://doi.org/10.1016/j.chembiol.2023.04.008.

    Article  CAS  Google Scholar 

  213. Rodríguez JM, Garranzo M, Segura J, Orgaz B, Arroyo R, Alba C, et al. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Front Microbiol. 2023;14:1111652. https://doi.org/10.3389/fmicb.2023.1111652.

    Article  PubMed  PubMed Central  Google Scholar 

  214. **e WR, Yang XY, Deng ZH, Zheng YM, Zhang R, Wu LH, et al. Effects of washed microbiota transplantation on serum uric acid levels, symptoms, and intestinal barrier function in patients with acute and recurrent gout: a pilot study. Dig Dis. 2022;40:684–90. https://doi.org/10.1159/000521273.

    Article  PubMed  Google Scholar 

  215. Yamanaka H, Taniguchi A, Tsuboi H, Kano H, Asami Y. Hypouricaemic effects of yoghurt containing Lactobacillus gasseri PA-3 in patients with hyperuricaemia and/or gout: a randomised, double-blind, placebo-controlled study. Mod Rheumatol. 2019;29:146–50. https://doi.org/10.1080/14397595.2018.1442183.

    Article  CAS  PubMed  Google Scholar 

  216. Lin S, Zhang T, Zhu L, Pang K, Lu S, Liao X, et al. Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota. J Genet Genom. 2021;48:781–91. https://doi.org/10.1016/j.jgg.2021.06.009.

    Article  CAS  Google Scholar 

  217. Shi Y, Li J, Yang P, Niu Z, Wei L, Chen L, et al. Colchicine increases intestinal permeability, suppresses inflammatory responses, and alters gut microbiota in mice. Toxicol Lett. 2020;334:66–77. https://doi.org/10.1016/j.toxlet.2020.09.018.

    Article  CAS  PubMed  Google Scholar 

  218. Terkeltaub R, Clark D, Tosone C, Kandinov B, Zhang P, Dahl N, et al. Safety and efficacy of ALLN-346 oral enzyme therapy in patients with hyperuricemia and chronic kidney disease (CKD): results of the Phase 2a study 201. Ann Rheumatic Dis. 2022;81(Suppl. 1):1157. https://doi.org/10.1136/annrheumdis-2022-eular.1662. (Abstract).

    Article  Google Scholar 

  219. Li X, Chen Y, Gao X, Wu Y, El-Seedi HR, Cao Y, et al. Antihyperuricemic effect of green Alga Ulva lactuca Ulvan through regulating urate transporters. J Agric Food Chem. 2021;69:11225–35. https://doi.org/10.1021/acs.jafc.1c03607.

    Article  CAS  PubMed  Google Scholar 

  220. Zhang L, Liu J, ** T, Qin N, Ren X, **a X. Live and pasteurized Akkermansia muciniphila attenuate hyperuricemia in mice through modulating uric acid metabolism, inflammation, and gut microbiota. Food Funct. 2022;13:12412–25. https://doi.org/10.1039/d2fo02702j. (PMID: 36374311).

    Article  CAS  PubMed  Google Scholar 

  221. Chen M, Lu X, Lu C, Shen N, Jiang Y, Chen M, et al. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res Ther. 2018;20:20. https://doi.org/10.1186/s13075-018-1512-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: specific and nonspecific modulators. Med Res Rev. 2017;37:987–1050. https://doi.org/10.1002/med.21428.

    Article  CAS  PubMed  Google Scholar 

  223. Murakami M, Ohnuma S, Fukuda M, Chufan EE, Kudoh K, Kanehara K, et al. Synthetic analogs of curcumin modulate the function of multidrug resistance-linked ATP-binding cassette transporter ABCG2. Drug Metab Dispos. 2017;45:1166–77. https://doi.org/10.1124/dmd.117.076000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ristic B, Sikder MOF, Bhutia YD, Ganapathy V. Pharmacologic inducers of the uric acid exporter ABCG2 as potential drugs for treatment of gouty arthritis. Asian J Pharm Sci. 2020;15:173–80. https://doi.org/10.1016/j.ajps.2019.10.002.

    Article  PubMed  Google Scholar 

  225. Fujita K, Ichida K. ABCG2 as a therapeutic target candidate for gout. Expert Opin Ther Targets. 2018;22:123–9. https://doi.org/10.1080/14728222.2018.1420167.

    Article  CAS  PubMed  Google Scholar 

  226. Chang FW, Fan HC, Liu JM, Fan TP, **g J, Yang CL, et al. Estrogen enhances the expression of the multidrug transporter gene ABCG2-increasing drug resistance of breast cancer cells through estrogen receptors. Int J Mol Sci. 2017;18:163. https://doi.org/10.3390/ijms18010163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y, et al. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res. 2009;26:469–79. https://doi.org/10.1007/s11095-008-9752-7.

    Article  CAS  PubMed  Google Scholar 

  228. Ichida K, Amaya Y, Okamoto K, Nishino T. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci. 2012;13:15475–95. https://doi.org/10.3390/ijms131115475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Higa Y, Hiasa M, Tenshin H, Nakaue E, Tanaka M, Kim S, et al. The xanthine oxidase inhibitor febuxostat suppresses adipogenesis and activates Nrf2. Antioxidants (Basel). 2023;12:133. https://doi.org/10.3390/antiox12010133.

    Article  CAS  PubMed  Google Scholar 

  230. Kinnula VL, Sarnesto A, Heikkilä L, Toivonen H, Mattila S, Raivio KO. Assessment of xanthine oxidase in human lung and lung transplantation. Eur Respir J. 1997;10:676–80.

    Article  CAS  PubMed  Google Scholar 

  231. Elsaid K, Merriman TR, Rossitto LA, Liu-Bryan R, Karsh J, Phipps-Green A, et al. Amplification of inflammation by lubricin deficiency implicated in incident, erosive gout independent of hyperuricemia. Arthritis Rheumatol. 2023;75:794–805. https://doi.org/10.1002/art.42413.

    Article  CAS  PubMed  Google Scholar 

  232. Najafi S, Bahrami M, Butler AE, Sahebkar A. The effect of glucagon-like peptide-1 receptor agonists on serum uric acid concentration: a systematic review and meta-analysis. Br J Clin Pharmacol. 2022;88:3627–37. https://doi.org/10.1111/bcp.15344.

    Article  CAS  PubMed  Google Scholar 

  233. Nidorf SM. Seeing colchicine in a new light: repurposing low-dose colchicine for secondary prevention of cardiovascular disease. Clin Ther. 2023;S0149–2918(23):00257–66. https://doi.org/10.1016/j.clinthera.2023.07.007.

    Article  CAS  Google Scholar 

  234. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47. https://doi.org/10.1056/NEJMoa2021372.

    Article  CAS  PubMed  Google Scholar 

  235. Bardin T. Hyperuricemia starts at 360 micromoles (6 mg/dL). Jt Bone Spine. 2015;82(3):141–3.

    Article  CAS  Google Scholar 

  236. Pascual E, Peral-Garrido ML, Andrés M. Where should we set the start of gout? Jt Bone Spine. 2023;90: 105509. https://doi.org/10.1016/j.jbspin.2022.105509.

    Article  Google Scholar 

  237. Chhana A, Pool B, Wei Y, Choi A, Gao R, Munro J, et al. Human cartilage homogenates influence the crystallization of monosodium urate and inflammatory response to monosodium urate crystals: a potential link between osteoarthritis and gout. Arthritis Rheumatol. 2019;71:2090–9. https://doi.org/10.1002/art.41038.

    Article  CAS  PubMed  Google Scholar 

  238. Chhana A, Lee G, Dalbeth N. Factors influencing the crystallization of monosodium urate: a systematic literature review. BMC Musculoskelet Disord. 2015;16:296. https://doi.org/10.1186/s12891-015-0762-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Stamp L, Horne A, Mihov B, Drake J, Haslett J, Chapman PT, et al. Is colchicine prophylaxis required with start-low go-slow allopurinol dose escalation in gout? A non-inferiority randomised double-blind placebo-controlled trial. Ann Rheum Dis. 2023. https://doi.org/10.1136/ard-2023-224731.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Terkeltaub.

Ethics declarations

Funding

Research conducted by Robert Terkeltaub was funded by the VA Research Service (I01 BX001660-06) and National Institutes of Health (AR060772).

Conflict of interest

Robert Terkeltaub has recently served, or currently serves, as a consultant for Allena, LG Chem, Fortress/Urica, Selecta Biosciences, Horizon Therapeutics, Atom Bioscience, Acquist Therapeutics, Generate Biomedicines, Astra-Zeneca, and Synlogic, and was a previous recipient of a research grant from AstraZeneca. He serves as the non-salaried President of the G-CAN (Gout, Hyperuricemia, and Crystal-Associated Disease Network) research society, which annually receives unrestricted arms-length grant support from pharma donors.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terkeltaub, R. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs 83, 1501–1521 (2023). https://doi.org/10.1007/s40265-023-01944-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01944-y

Navigation