Log in

Melatonin and Multiple Sclerosis: From Plausible Neuropharmacological Mechanisms of Action to Experimental and Clinical Evidence

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a devastating chronic autoimmune demyelinating disease of the central nervous system (CNS), thought to affect more than 2.5 million people worldwide. Regulation of the sleep-wake cycle might influence disease activity and the frequency of relapses in patients. As melatonin (or sleep hormone) involves the regulation of circadian rhythms, much attention has been paid to the management of MS symptoms with melatonin. This review describes the pharmacological mechanisms underlying the neuroprotective effects of melatonin and recent clinical evidence from MS patients. Apparent risks and benefits of melatonin therapies are also discussed. Various in vivo and clinical data presented in this up-to-date review suggest that melatonin may possibly possess a protective role against the behavioral deficits and neuropathological characteristics of MS. Multiple mechanisms of the neuroprotective effects of melatonin such as mitochondrial protection and antioxidant, anti-inflammatory, and anti-apoptotic properties, as well as its anti-demyelinating function are also discussed. A large body of evidence shows that melatonin potently regulates the immune system, demyelination, free radical generation, and inflammatory responses in neural tissue, which are mediated by multiple signal transduction cascades. In the present article, we focus on different pathways that are targeted by melatonin to prevent the development and progression of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545.

    Article  CAS  PubMed  Google Scholar 

  2. Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis—a quiet revolution. Nat Rev Neurol. 2015;11(3):134.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge and future outlook. Eur Neurol. 2014;72(3–4):132–41.

    Article  CAS  PubMed  Google Scholar 

  4. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.

    Article  PubMed  Google Scholar 

  5. Rahmanzadeh R, Moghadasi AN, Navardi S, Minagar A, Sahraian MA. Multiple sclerosis: clinical features, pathophysiology, diagnosis, and management. In: Minagar A, editor. Neuroinflammation. New York: Elsevier; 2018. p. 1–20.

    Google Scholar 

  6. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, et al. Role of the blood–brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687–97.

    Article  CAS  PubMed  Google Scholar 

  7. Kamphuis WW, Derada Troletti C, Reijerkerk A, Romero IA, de Vries HE. The blood–brain barrier in multiple sclerosis: microRNAs as key regulators. CNS Neurol Disord Drug Targets (Curr Drug Targets CNS Neurol Disord). 2015;14(2):157–67.

    Article  CAS  Google Scholar 

  8. Hoffmann K. Photoperiod, pineal, melatonin and reproduction in hamsters. Prog Brain Res. 1979;52:397–415.

    Article  CAS  PubMed  Google Scholar 

  9. Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev. 1980;1(2):109–31.

    Article  CAS  PubMed  Google Scholar 

  10. Goldman BD, Darrow JM. The pineal gland and mammalian photoperiodism. Neuroendocrinology. 1983;37(5):386–96.

    Article  CAS  PubMed  Google Scholar 

  11. Bittman EL, Karsch FJ. Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biol Reprod. 1984;30(3):585–93.

    Article  CAS  PubMed  Google Scholar 

  12. Tamarkin L, Baird CJ, Almeida O. Melatonin: a coordinating signal for mammalian reproduction? Science. 1985;227(4688):714–20.

    Article  CAS  PubMed  Google Scholar 

  13. Pévet P. The role of the pineal gland in the photoperiodic control of reproduction in different hamster species. Reprod Nutr Dev. 1988;28(2B):443–58.

    Article  PubMed  Google Scholar 

  14. Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms. 2001;16(4):283–301.

    Article  CAS  PubMed  Google Scholar 

  15. Letechipı́a-Vallejo G, González-Burgos I, Cervantes M. Neuroprotective effect of melatonin on brain damage induced by acute global cerebral ischemia in cats. Arch Med Res. 2001;32(3):186–92.

    Article  PubMed  Google Scholar 

  16. Kennaway DJ, Lushington K, Dawson D, Lack L, van den Heuvel C, Rogers N. Urinary 6-sulfatoxymelatonin excretion and aging: new results and a critical review of the literature. J Pineal Res. 1999;27(4):210–20.

    Article  CAS  PubMed  Google Scholar 

  17. Reiter RJ. The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp Gerontol. 1995;30(3–4):199–212.

    Article  CAS  PubMed  Google Scholar 

  18. Reiter RJ, Tan D-X, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci. 2000;7(6):444–58.

    Article  CAS  PubMed  Google Scholar 

  19. Vaněček J, Pavlík A, Illnerová H. Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res. 1987;435(1–2):359–62.

    Article  PubMed  Google Scholar 

  20. Pevet P, Bothorel B, Slotten H, Saboureau M. The chronobiotic properties of melatonin. Cell Tissue Res. 2002;309(1):183–91.

    Article  CAS  PubMed  Google Scholar 

  21. Quay W. Circadian and estrous rhythms in pineal melatonin and 5-hydroxy indole-3-acetic acid. Proc Soc Exp Biol Med. 1964;115(3):710–3.

    Article  CAS  PubMed  Google Scholar 

  22. Cardinali DP, Larin F, Wurtman RJ. Control of the rat pineal gland by light spectra. Proc Natl Acad Sci. 1972;69(8):2003–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brammer GL, Yumiler A, Wetterberg L. N-Acetyltransferase activity of the rat Harderian gland. Biochim Biophys Acta. 1978;526(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  24. Vivien-Roels B, Pevet P, Dubois M, Arendt J, Brown G. Immunohistochemical evidence for the presence of melatonin in the pineal gland, the retina and the Harderian gland. Cell Tissue Res. 1981;217(1):105–15.

    Article  CAS  PubMed  Google Scholar 

  25. Roseboom P, Coon S, Baler R, McCune S, Weller J, Klein D. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology. 1996;137(7):3033–44.

    Article  CAS  PubMed  Google Scholar 

  26. Ribelayga C, Gauer F, Pévet P, Simonneaux V. Distribution of hydroxyindole-O-methyltransferase mRNA in the rat brain: an in situ hybridisation study. Cell Tissue Res. 1998;291(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  27. Djeridane Y, Vivien-Roels B, Simonneaux V, Miguez JM, Pévet P. Evidence for melatonin synthesis in rodent Harderian gland: a dynamic in vitro study. J Pineal Res. 1998;25(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  28. Djeridane Y, Pitrosky B, Vivien-Roels B, Simonneaux V, Kirsch R, Pévet P. Long-term daily melatonin infusion induces a large increase in N-acetyltransferase activity, hydroxyindole-O-methyltransferase activity, and melatonin content in the Harderian gland and eye of pinealectomized male Siberian hamsters (Phodopus sungorus). J Pineal Res. 2000;29(2):65–73.

    Article  CAS  PubMed  Google Scholar 

  29. Quay W, Ma Y. Demonstration of gastrointestinal hydroxyindole-O-methyltransferase. IRCS Med Sci. 1976;4:563.

    CAS  Google Scholar 

  30. Gauer F, Craft CM. Circadian regulation of hydroxyindole-O-methyltransferase mRNA levels in rat pineal and retina. Brain Res. 1996;737(1–2):99–109.

    Article  CAS  PubMed  Google Scholar 

  31. Pévet P, Balemans M, Legerstee W, Vivien-Roels B. Circadian rhythmicity of the activity of hydroxyindole-O-methyl transferase (HIOMT) in the formation of melatonin and 5-methoxytryptophol in the pineal, retina, and harderian gland of the golden hamster. J Neural Transm. 1980;49(4):229–45.

    Article  PubMed  Google Scholar 

  32. Dubocovich ML, Takahashi JS. Use of 2-[125I] iodomelatonin to characterize melatonin binding sites in chicken retina. Proc Natl Acad Sci. 1987;84(11):3916–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopez-Gonzalez M, Calvo J, Rubio A, Goberna R, Guerrero J. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat. Life Sci. 1991;48(12):1165–71.

    Article  CAS  PubMed  Google Scholar 

  34. Cardinali D, Nagle C, Freire F, Rosner J. Effects of melatonin on neurotransmitter uptake and release by synaptosome-rich homogenates of the rat hypothalamus. Neuroendocrinology. 1975;18(1):72–85.

    Article  CAS  PubMed  Google Scholar 

  35. Carneiro RC, Toffoleto O, Cipolla-Neto J, Marcus RP. Modulation of sympathetic neurotransmission by melatonin. Eur J Pharmacol. 1994;257(1–2):73–7.

    Article  CAS  PubMed  Google Scholar 

  36. Markus RP, Zago WM, Carneiro R. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J Pharmacol Exp Ther. 1996;279(1):18–22.

    CAS  PubMed  Google Scholar 

  37. Bucher B, Gauer F, Pévet P, Masson-Pévet M. Vasoconstrictor effects of various melatonin analogs on the rat tail artery in the presence of phenylephrine. J Cardiovasc Pharmacol. 1999;33(2):316–22.

    Article  CAS  PubMed  Google Scholar 

  38. Wan Q, Man H-Y, Liu F, Braunton J, Niznik HB, Pang SF, et al. Differential modulation of GABA A receptor function by Mel 1a and Mel 1b receptors. Nat Neurosci. 1999;2(5):401.

    Article  CAS  PubMed  Google Scholar 

  39. Golombek DA, Pévet P, Cardinali DP. Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci Biobehav Rev. 1996;20(3):403–12.

    Article  CAS  PubMed  Google Scholar 

  40. Pierpaoli W, Regelson W. Pineal control of aging: effect of melatonin and pineal grafting on aging mice. Proc Natl Acad Sci. 1994;91(2):787–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Menendez-Pelaez A, Reiter RJ. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res. 1993;15(2):59–69.

    Article  CAS  PubMed  Google Scholar 

  42. Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B. Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a) anthracene-induced mammary tumors in the rat. Cancer Res. 1981;41(11 Pt 1):4432–6.

    CAS  PubMed  Google Scholar 

  43. Blask D, Hill S. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm Suppl. 1986;21:433–49.

    CAS  PubMed  Google Scholar 

  44. Hill SM, Blask DE. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 1988;48(21):6121–6.

    CAS  PubMed  Google Scholar 

  45. Teplitzky S, Kiefer T, Cheng Q, Dwivedi P, Moroz K, Myers L, et al. Chemoprevention of NMU-induced rat mammary carcinoma with the combination of melatonin and 9-cis-retinoic acid. Cancer Lett. 2001;168(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  46. Kiefer T, Ram P, Yuan L, Hill S. Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat. 2002;71(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  47. Scott AE, Cosma GN, Frank AA, Wells RL, Gardner HS Jr. Disruption of mitochondrial respiration by melatonin in MCF-7 cells. Toxicol Appl Pharmacol. 2001;171(3):149–56.

    Article  CAS  PubMed  Google Scholar 

  48. Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci. 1994;55(24):PL455–60.

    Article  CAS  PubMed  Google Scholar 

  49. Benot S, Gobema R, Reiter RJ, Garcia-Mauriño S, Osuna C, Guerrero JM. Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res. 1999;27(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  50. Armstrong S, Redman J. Melatonin: a chronobiotic with anti-aging properties? Med Hypotheses. 1991;34(4):300–9.

    Article  CAS  PubMed  Google Scholar 

  51. Reiter R, Tan D, Mayo J, Sainz R, Leon J, Bandyopadhyay D. Neurally-mediated and neurally-independent beneficial. J Physiol Pharmacol. 2003;54(4):113–25.

    PubMed  Google Scholar 

  52. Darlington LG, Forrest CM, Mackay GM, Smith RA, Smith AJ, Stoy N, et al. On the biological importance of the 3-hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res. 2010;3:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stone TW, Forrest CM, Stoy N, Darlington LG. Involvement of kynurenines in Huntington’s disease and stroke-induced brain damage. Neural Transm. 2012;119(2):261–74.

    Article  CAS  Google Scholar 

  54. Kwidzinski E, Bunse J Jr, Aktas O, Richter D, Mutlu L, Zipp F, et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J. 2005;19(10):1347–9.

    Article  CAS  PubMed  Google Scholar 

  55. Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Fuchs D, et al. Indoleamine 2,3 dioxygenase (IDO) expression and activity in relapsing-remitting multiple sclerosis. PLoS ONE. 2015;10(6):e0130715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakurai K, Zou J-P, Tschetter JR, Ward JM, Shearer GM. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;129(1–2):186–96.

    Article  CAS  PubMed  Google Scholar 

  57. Sundaram G, Brew BJ, Jones SP, Adams S, Lim CK, Guillemin GJ. Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies. J Neuroinflamm. 2014;11(1):204.

    Article  CAS  Google Scholar 

  58. Anderson G, Rodriguez M. Multiple sclerosis, seizures, and antiepileptics: role of IL-18, IDO, and melatonin. Eur J Neurol. 2011;18(5):680–5.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, et al. N-Acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci. 2014;34(8):2967–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klein DC, Coon SL, Roseboom PH, Weller J, Bernard M, Gastel JA, et al. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Hormone Res. 1997;52:307–58.

    CAS  Google Scholar 

  61. Khalil EM, De Angelis J, Ishii M, Cole PA. Mechanism-based inhibition of the melatonin rhythm enzyme: pharmacologic exploitation of active site functional plasticity. Proc Natl Acad Sci. 1999;96(22):12418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005;26(8):412–9.

    Article  CAS  PubMed  Google Scholar 

  63. Ferry G, Mozo J, Ubeaud C, Berger S, Bertrand M, Try A, et al. Characterization and regulation of a CHO cell line stably expressing human serotonin N-acetyltransferase (EC 2.3. 1.87). Cell Mol Life Sci CMLS. 2002;59(8):1395–405.

    Article  CAS  PubMed  Google Scholar 

  64. Ganguly S, Coon SL, Klein DC. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res. 2002;309(1):127–37.

    Article  CAS  PubMed  Google Scholar 

  65. Garbarino-Pico E, Carpentieri AR, Contin MA, Sarmiento MIK, Brocco M, Panzetta P, et al. Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetylserotonin during the day. J Biol Chem. 2004;279(49):51172–81.

    Article  CAS  PubMed  Google Scholar 

  66. Hirata F, Hayaishi O, Tokuyama T, Senoh S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem. 1974;249(4):1311–3.

    CAS  PubMed  Google Scholar 

  67. Takikawa O, Yoshida R, Hayaishi O. Monooxygenase activities of dioxygenases. Benzphetamine demethylation and aniline hydroxylation reactions catalyzed by indoleamine 2,3-dioxygenase. J Biol Chem. 1983;258(11):6808–15.

    CAS  PubMed  Google Scholar 

  68. Allegra M, Furtmüller PG, Regelsberger G, Turco-Liveri ML, Tesoriere L, Perretti M, et al. Mechanism of reaction of melatonin with human myeloperoxidase. Biochem Biophys Res Commun. 2001;282(2):380–6.

    Article  CAS  PubMed  Google Scholar 

  69. de Oliveira Silva S, **menes VF, Catalani LH, Campa A. Myeloperoxidase-catalyzed oxidation of melatonin by activated neutrophils. Biochem Biophys Res Commun. 2000;279(2):657–62.

    Article  CAS  Google Scholar 

  70. Ferry G, Ubeaud C, Lambert P-H, Bertin S, Francis C, Chomarat P, et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J. 2005;388(1):205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li Y, Hu N, Yang D, Oxenkrug G, Yang Q. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J. 2017;284(6):948–66.

    Article  CAS  PubMed  Google Scholar 

  72. Yang Y, Duan W, ** Z, Yi W, Yan J, Zhang S, et al. JAK 2/STAT 3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res. 2013;55(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  73. Iguchi H, Kato K-I, Ibayashi H. Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab. 1982;55(1):27–9.

    Article  CAS  Google Scholar 

  74. Vakkuri O, Leppäluoto J, Kauppila A. Oral administration and distribution of melatonin in human serum, saliva and urine. Life Sci. 1985;37(5):489–95.

    Article  CAS  PubMed  Google Scholar 

  75. Yeleswaram K, McLaughlin LG, Knipe JO, Schabdach D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997;22(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  76. Fourtillan J, Brisson A, Gobin P, Ingrand I, Decourt JP, Girault J. Bioavailability of melatonin in humans after day-time administration of D7 melatonin. Biopharm Drug Dispos. 2000;21(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  77. Flo A, Cambras T, Díez-Noguera A, Calpena A. Melatonin pharmacokinetics after transdermal administration changes according to the time of the day. Eur J Pharm Sci. 2017;96:164–70.

    Article  CAS  PubMed  Google Scholar 

  78. Morgan L, Arendt J, Owens D, Folkard S, Hampton S, Deacon S, et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J Endocrinol. 1998;157(3):443–51.

    Article  CAS  PubMed  Google Scholar 

  79. Sharma S, Singh H, Ahmad N, Mishra P, Tiwari A. The role of melatonin in diabetes: therapeutic implications. Arch Endocr Metab. 2015;59(5):391–9.

    Article  Google Scholar 

  80. Mao S, Chen J, Wei Z, Liu H, Bi D. Intranasal administration of melatonin starch microspheres. Int J Pharm. 2004;272(1–2):37–43.

    Article  CAS  PubMed  Google Scholar 

  81. Bellapart J, Roberts JA, Appadurai V, Wallis SC, Nuñez-Nuñez M, Boots RJ. Pharmacokinetics of a novel dosing regimen of oral melatonin in critically ill patients. Clin Chem Lab Med (CCLM). 2016;54(3):467–72.

    Article  CAS  PubMed  Google Scholar 

  82. Reiter RJ, Guerrero JM, Escames G, Pappolla MA, Acuña‐Castroviejo D. Prophylactic actions of melatonin in oxidative neurotoxicity. Ann N Y Acad Sci. 1997;825(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  83. Leker R, Teichner A, Lavie G, Shohami E, Lamensdorf I, Ovadia H. The nitroxide antioxidant tempol is cerebroprotective against focal cerebral ischemia in spontaneously hypertensive rats. Exp Neurol. 2002;176(2):355–63.

    Article  CAS  PubMed  Google Scholar 

  84. Watson N, Diamandis T, Gonzales-Portillo C, Reyes S, Borlongan CV. Melatonin as an antioxidant for stroke neuroprotection. Cell Transplant. 2016;25(5):883–91.

    Article  PubMed  Google Scholar 

  85. Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, et al. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res. 2007;42(3):297–309.

    Article  CAS  PubMed  Google Scholar 

  86. Gomaa AM, Galal HM, Abou-Elgait AT. Neuroprotective effects of melatonin administration against chronic immobilization stress in rats. Int J Physiol Pathophysiol Pharmacol. 2017;9(2):16.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jacob S, Poeggeler B, Weishaupt JH, Sirén AL, Hardeland R, Bähr M, et al. Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res. 2002;33(3):186–7.

    Article  CAS  PubMed  Google Scholar 

  88. Chahbouni M, Escames G, Venegas C, Sevilla B, García JA, López LC, et al. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res. 2010;48(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  89. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Brusco LI. Melatonin therapy in patients with Alzheimer’s disease. Antioxidants. 2014;3(2):245–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M, et al. Inhibition of Alzheimer β-fibrillogenesis by melatonin. J Biol Chem. 1998;273(13):7185–8.

    Article  CAS  PubMed  Google Scholar 

  91. Lima ACP, Louzada PR, De Mello FG, Ferreira ST. Neuroprotection against Aβ and glutamate toxicity by melatonin: Are GABA receptors involved? Neurotox Res. 2003;5(5):323–7.

    Article  Google Scholar 

  92. Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  93. Giusti P, Lipartiti M, Franceschini D, Schiavo N, Floreani M, Manev H. Neuroprotection by melatonin from kainate-induced excitotoxicity in rats. FASEB J. 1996;10(8):891–6.

    Article  CAS  PubMed  Google Scholar 

  94. Manev H, Uz T, Kharlamov A, Joo J. Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J. 1996;10(13):1546–51.

    Article  CAS  PubMed  Google Scholar 

  95. Cho S, Joh TH, Baik HH, Dibinis C, Volpe BT. Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Res. 1997;755(2):335–8.

    Article  CAS  PubMed  Google Scholar 

  96. Kilic E, Öuzdemir YG, Bolay H, Keleştimur H, Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab. 1999;19(5):511–6.

    Article  CAS  PubMed  Google Scholar 

  97. Deng Y-Q, Xu G-G, Duan P, Zhang Q, Wang J-Z. Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol Sin. 2005;26(5):519.

    Article  CAS  PubMed  Google Scholar 

  98. Lau WW, Ng JK, Lee MM, Chan AS, Wong YH. Interleukin-6 autocrine signaling mediates melatonin MT1/2 receptor-induced STAT3 Tyr705 phosphorylation. J Pineal Res. 2012;52(4):477–89.

    Article  CAS  PubMed  Google Scholar 

  99. Chuang JI, Mohan N, Meltz ML, Reiter RJ. Effect, of melatonin, on NF-κb dna-binding activity in the rat spleen. Cell Biol Int. 1996;20(10):687–92.

    Article  CAS  PubMed  Google Scholar 

  100. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res. 2004;37(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  101. Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol. 2010;8(3):218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rajaratnam SM, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G, et al. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet. 2009;373(9662):482–91.

    Article  CAS  PubMed  Google Scholar 

  103. McKenna JT, Christie MA, Jeffrey BA, McCoy JG, Lee E, Connolly NP, et al. Chronic ramelteon treatment in a mouse model of Alzheimer’s disease. Arch Ital Biol. 2012;150(1):5.

    PubMed  PubMed Central  Google Scholar 

  104. Mack JM, Schamne MG, Sampaio TB, Pértile RAN, Fernandes PACM, Markus RP, et al. Melatoninergic system in Parkinson’s disease: from neuroprotection to the management of motor and nonmotor symptoms. Oxid Med Cell Longev. 2016;2016:3472032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res. 2011;50(2):97–109.

    CAS  PubMed  Google Scholar 

  106. Wilkinson D, Shepherd E, Wallace EM. Melatonin for women in pregnancy for neuroprotection of the fetus. Cochrane Libr. 2016;3:CD010527.

    Google Scholar 

  107. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI. Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis. 2012;1(3):280.

    PubMed  PubMed Central  Google Scholar 

  108. Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, et al. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013;23(3):267–300.

    Article  CAS  PubMed  Google Scholar 

  109. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014. https://doi.org/10.1212/wnl.0000000000000560.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Graetz C, Groppa S, Zipp F, Siller N. Preservation of neuronal function as measured by clinical and MRI endpoints in relapsing-remitting multiple sclerosis: how effective are current treatment strategies? Expert Rev Neurother. 2018;18(3):203–19.

    Article  CAS  PubMed  Google Scholar 

  111. Compston A, Coles A. Multiple sclerosis. Lancet (London, England). 2008;372(9648):1502–17 (Epub 2008/10/31).

    Article  CAS  Google Scholar 

  112. Tullman MJ. Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Manag Care. 2013;19(2 Suppl):S15–20.

    PubMed  Google Scholar 

  113. Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210–8.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain. 2018;141(7):1900–16.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bannerman P. Cortical involvement in multiple sclerosis. In: Cechetto D, Weishaupt N, editors. The cerebral cortex in neurodegenerative and neuropsychiatric disorders: New York: Elsevier; 2017. pp. 243–73.

  116. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  117. Wingerchuk DM, Carter JL. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc. 2014;89(2):225–40.

    Article  PubMed  Google Scholar 

  118. Farzaei MH, Shahpiri Z, Bahramsoltani R, Najafi F, Rahimi R. Efficacy and tolerability of phytomedicines in multiple sclerosis patients: a review. CNS Drugs. 2017;31(10):867–89.

    Article  CAS  PubMed  Google Scholar 

  119. Sand IK. The role of diet in multiple sclerosis: mechanistic connections and current evidence. Curr Nutr Rep. 2018;7(3):150–60.

    Article  CAS  Google Scholar 

  120. Hart BA. Why does multiple sclerosis only affect human primates? Multip Scler. (Houndmills, Basingstoke, England). 2016;22(4):559–63 (Epub 2015/11/06).

    Article  CAS  Google Scholar 

  121. Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079–106 (Epub 2011/03/05).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Torkildsen O, Brunborg LA, Myhr KM, Bo L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72–6 (Epub 2008/06/18).

    Article  CAS  PubMed  Google Scholar 

  123. Vakilzadeh G, Khodagholi F, Ghadiri T, Ghaemi A, Noorbakhsh F, Sharifzadeh M, et al. The effect of melatonin on behavioral, molecular, and histopathological changes in cuprizone model of demyelination. Mol Neurobiol. 2016;53(7):4675–84 (Epub 2015/08/28).

    Article  CAS  PubMed  Google Scholar 

  124. Wen J, Ariyannur PS, Ribeiro R, Tanaka M, Moffett JR, Kirmani BF, et al. Efficacy of N-acetylserotonin and melatonin in the EAE model of multiple sclerosis. J Neuroimmune Pharmacol. 2016;11(4):763–73.

    Article  PubMed  Google Scholar 

  125. Alvarez-Sanchez N, Cruz-Chamorro I, Lopez-Gonzalez A, Utrilla JC, Fernandez-Santos JM, Martinez-Lopez A, et al. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav Immun. 2015;50:101–14 (Epub 2015/07/03).

    Article  CAS  PubMed  Google Scholar 

  126. Kang JC, Ahn M, Kim YS, Moon C, Lee Y, Wie MB, et al. Melatonin ameliorates autoimmune encephalomyelitis through suppression of intercellular adhesion molecule-1. J Vet Sci. 2001;2(2):85–9 (Epub 2003/11/14).

    Article  CAS  PubMed  Google Scholar 

  127. Long T, Yang Y, Peng L, Li Z. Neuroprotective effects of melatonin on experimental allergic encephalomyelitis mice via anti-oxidative stress activity. J Mol Neurosci MN. 2018;64(2):233–41 (Epub 2018/02/17).

    Article  CAS  PubMed  Google Scholar 

  128. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol. 2004;251(3):261–8 (Epub 2004/03/12).

    Article  CAS  PubMed  Google Scholar 

  129. van Horssen J, Schreibelt G, Bo L, Montagne L, Drukarch B, van Muiswinkel FL, et al. NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radic Biol Med. 2006;41(2):311–7 (Epub 2006/07/04).

    Article  CAS  PubMed  Google Scholar 

  130. Arnold P, Mojumder D, Detoledo J, Lucius R, Wilms H. Pathophysiological processes in multiple sclerosis: focus on nuclear factor erythroid-2-related factor 2 and emerging pathways. Clin Pharmacol Adv Appl. 2014;6:35–42 (Epub 2014/03/05).

    Google Scholar 

  131. Ghareghani M, Zibara K, Sadeghi H, Farhadi N. Spasticity treatment ameliorates the efficacy of melatonin therapy in experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Cell Mol Neurobiol. 2018;38(5):1145–51 (Epub 2018/03/03).

    Article  CAS  PubMed  Google Scholar 

  132. Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, et al. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res. 2014;232(9):2835–46 (Epub 2014/05/07).

    Article  CAS  PubMed  Google Scholar 

  133. Campbell GR, Mahad DJ. Mitochondria as crucial players in demyelinated axons: lessons from neuropathology and experimental demyelination. Autoimmune Dis. 2011;2011:262847.

    PubMed  PubMed Central  Google Scholar 

  134. Campbell G, Mahad DJ. Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis. FEBS Lett. 2018;592(7):1113–21 (Epub 2018/02/18).

    Article  CAS  PubMed  Google Scholar 

  135. Lin W, Lin Y. IFN-γ inhibits central nervous system myelination through both STAT1-dependent and STAT1-independent pathways. J Neurosci Res. 2010;88(12):2569–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen SJ, Huang SH, Chen JW, Wang KC, Yang YR, Liu PF, et al. Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2016;31:169–77 (Epub 2016/01/07).

    Article  CAS  PubMed  Google Scholar 

  137. Ghareghani M, Dokoohaki S, Ghanbari A, Farhadi N, Zibara K, Khodadoust S, et al. Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: a potential biomarker of multiple sclerosis progression. Clin Exp Pharmacol Physiol. 2017;44(1):52–61 (Epub 2016/10/04).

    Article  CAS  PubMed  Google Scholar 

  138. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):37–53.

    Article  PubMed  Google Scholar 

  139. Peschl P, Bradl M, Hoftberger R, Berger T, Reindl M. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529 (Epub 2017/05/24).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gupta S, Ahsan I, Mahfooz N, Abdelhamid N, Ramanathan M, Weinstock-Guttman B. Osteoporosis and multiple sclerosis: risk factors, pathophysiology, and therapeutic interventions. CNS Drugs. 2014;28(8):731–42 (Epub 2014/05/30).

    Article  CAS  PubMed  Google Scholar 

  141. Ghareghani M, Scavo L, Arnoult D, Zibara K, Farhadi N. Melatonin therapy reduces the risk of osteoporosis and normalizes bone formation in multiple sclerosis. Fundam Clin Pharmacol. 2018;32(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  142. Natarajan R, Einarsdottir E, Riutta A, Hagman S, Raunio M, Mononen N, et al. Melatonin pathway genes are associated with progressive subtypes and disability status in multiple sclerosis among Finnish patients. J Neuroimmunol. 2012;250(1–2):106–10.

    Article  CAS  PubMed  Google Scholar 

  143. Melamud L, Golan D, Luboshitzky R, Lavi I, Miller A. Melatonin dysregulation, sleep disturbances and fatigue in multiple sclerosis. J Neurol Sci. 2012;314(1–2):37–40.

    Article  CAS  PubMed  Google Scholar 

  144. Adamczyk-Sowa M, Sowa P, Adamczyk J, Niedziela N, Misiolek H, Owczarek M, et al. Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone. J Physiol Pharmacol. 2016;67:235–42.

    CAS  PubMed  Google Scholar 

  145. Roostaei T, Sahraian MA, Hajeaghaee S, Gholipour T, Togha M, Siroos B, et al. Impact of melatonin on motor, cognitive and neuroimaging indices in patients with multiple sclerosis. Iran J Allergy Asthma Immunol. 2015;14(6):589–95.

    PubMed  Google Scholar 

  146. Gholipour T, Ghazizadeh T, Babapour S, Mansouri B, Ghafarpour M, Siroos B, et al. Decreased urinary level of melatonin as a marker of disease severity in patients with multiple sclerosis. Iran J Allergy Asthma Immunol. 2015;14(1):91–7.

    PubMed  Google Scholar 

  147. Miller E, Walczak A, Majsterek I, Kedziora J. Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course. J Neuroimmunol. 2013;257(1–2):97–101 (Epub 2013/03/23).

    Article  CAS  PubMed  Google Scholar 

  148. Adamczyk-Sowa M, Galiniak S, Żyracka E, Grzesik M, Naparło K, Sowa P, et al. Oxidative modification of blood serum proteins in multiple sclerosis after interferon beta and melatonin treatment. Oxid Med Cell Longev. 2017;2017:7905148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Adamczyk-Sowa M, Pierzchala K, Sowa P, Polaniak R, Kukla M, Hartel M. Influence of melatonin supplementation on serum antioxidative properties and impact of the quality of life in multiple sclerosis patients. J Physiol Pharmacol. 2014;65(4):543–50.

    CAS  PubMed  Google Scholar 

  150. Adamczyk-Sowa M, Sowa P, Mucha S, Zostawa J, Mazur B, Owczarek M, et al. Changes in serum ceruloplasmin levels based on immunomodulatory treatments and melatonin supplementation in multiple sclerosis patients. Med Sci Monit Int Med J Exp Clin Res. 2016;22:2484.

    Google Scholar 

  151. Emamgholipour S, Hossein-nezhad A, Sahraian MA, Askarisadr F, Ansari M. Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci. 2016;145:34–41.

    Article  CAS  PubMed  Google Scholar 

  152. Ghorbani A, Salari M, Shaygannejad V, Norouzi R. The role of melatonin in the pathogenesis of multiple sclerosis: a case-control study. Int J Prev Med. 2013;4(Suppl 2):S180.

    PubMed  PubMed Central  Google Scholar 

  153. Mrowicka M, Garncarek P, Miller E, Kedziora J, Smigielski J, Malinowska K, et al. Effect of melatonin on activity of superoxide dismutase (CuZn-SOD) in erythrocytes of patients during short- and long-term hypokinesis. Wiadomosci Lekarskie (Warsaw, Poland: 1960). 2010;63(1):3–9.

    Google Scholar 

  154. Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 2015;162(6):1338–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alvarez-Sanchez N, Cruz-Chamorro I, Diaz-Sanchez M, Sarmiento-Soto H, Medrano-Campillo P, Martinez-Lopez A, et al. Melatonin reduces inflammatory response in peripheral T helper lymphocytes from relapsing-remitting multiple sclerosis patients. J Pineal Res. 2017;63(4):e12442 (Epub 2017/08/10).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hosein Farzaei.

Ethics declarations

Funding

No source funding was used to prepare this review.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh Salehpour, M., Mollica, A., Momtaz, S. et al. Melatonin and Multiple Sclerosis: From Plausible Neuropharmacological Mechanisms of Action to Experimental and Clinical Evidence. Clin Drug Investig 39, 607–624 (2019). https://doi.org/10.1007/s40261-019-00793-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-019-00793-6

Navigation