Log in

Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

PtCo nanoalloys (NAs) deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction (ORR). However, develo** a simple and low-cost method to synthesize PtCo/C with excellent performance is still a great challenge. In this work, a one-pot method was used to successfully obtain the PtCo NAs on commercial carbon supports of acetylene black and Ketjenblack ECP600JD, respectively. Compared with those grown on Ketjenblack ECP600JD, the PtCo NAs grown on acetylene black exhibited higher electrochemical surface area (ECSA) and mass activity (MA), which may be attributed to the different particle sizes of PtCo NAs, distinct hydrophilicity, electroconductivity and charge distribution between the carbon supports and PtCo NAs. Our study provides valuable insights into the optimal design of carbon-supported ORR electrocatalysts with exceptional activity and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wu H., Zhong H. C., Pan Y. Z., Li H. B., Peng Y., Yang L. J., Luo S. S., Banham D., Zeng J. H., Colloids Surf. A Physicochem. Eng. Asp., 2023, 656, 130341.

    Article  CAS  Google Scholar 

  2. Luo Z. C., Zhong G. Y., Meng Z., Fu X. B., Liao W. B., Zheng S. N., Xu Y. J., Luo S. J., Colloids Surf. A Physicochem. Eng. Asp., 2023, 671, 131631.

    Article  CAS  Google Scholar 

  3. Cao S., Sun T., Li Q. Z., Piao L. Y., Chen X. B., Trends Chem., 2023, 5, 947.

    Article  CAS  Google Scholar 

  4. Li J. R., Liu M. Xu., Liu X., Yu X. H., Li Q. Z., Sun Q., Sun T., Cao S., Hou C. C., Small Methods, 2024, 8, 2301249.

    Article  CAS  Google Scholar 

  5. Huang Z. X., Wu D. H., Chen M. T., Feng J. J., Wang A., Colloids Surf. A Physicochem. Eng. Asp., 2023, 679, 132567.

    Article  CAS  Google Scholar 

  6. Zhao Z. P., Chen C. L., Liu Z. Y., Huang J., Wu M. H., Liu H. T., Li Y. J., Huang Y., Adv. Mater., 2019, 31, 1808115.

    Article  Google Scholar 

  7. Sui S., Wang X. Y., Zhou X. t., Su Y. h., Riffat S., Liu C. J., J. Mater. Chem. A, 2017, 5, 1808.

    Article  CAS  Google Scholar 

  8. Hussain S., Erikson H., Kongi N., Sarapuu A., Solla-Gullón J., Maia G., Kannan A. M., Alonso-Vante N., Tammeveski K., Int. J. Hydrogen Energy, 2020, 45, 31775.

    Article  CAS  Google Scholar 

  9. Zhang W. H., Wang M. L., Jia A. K., Deng W., Bai S. X., Acta Phys.-Chim. Sin., 2024, 2309043.

  10. Guo M. R., Zhan J., Wang Z. K., Wang X. R., Dai Z., Wang T. Chin. Chem. Lett., 2023, 34, 107709.

    Article  CAS  Google Scholar 

  11. Lyu X., Jia Y., Mao X., Li D. H., Li G., Zhuang L. Z., Wang X., Yang D. J., Wang Q., Du A. J., Adv. Mater., 2020, 32, 2003493.

    Article  CAS  Google Scholar 

  12. **e M. H., Lyu Z. H., Chen R. H., Shen M., Cao Z. M., **a Y. N., J. Am. Chem. Soc., 2021, 22, 8509.

    Article  Google Scholar 

  13. Liang J. S., Li N., Zhao Z. L., Ma L., Wang X. M., Li S. Z., Liu X., Wang T. Y., Du Y. P., Lu G., Angew. Chem. Int. Ed., 2019, 58, 15471.

    Article  CAS  Google Scholar 

  14. Li J. R., ** Z., Pan Y. T., Spendelow J. S., Duchesne P. N., Su D., Li Q., Yu C., Yin Z. Y., Shen B., J. Am. Chem. Soc., 2018, 8, 2926.

    Article  Google Scholar 

  15. Yoo T. Y., Yoo J. M., Sinha A. K., Bootharaju M. S., Jung E., Lee H. S., Lee B. H., Kim J., Antink W. H., Kim Y. M., J. Am. Chem. Soc., 2020, 33, 14190.

    Article  Google Scholar 

  16. Show Y., Ueno Y., J. Nanomaterials, 2017, 7, 31.

    Article  Google Scholar 

  17. Show Y., Hirai A., Almowarai A., Ueno Y., Thin Solid Films, 2015, 596, 198.

    Article  CAS  Google Scholar 

  18. Fraga M., Jordao E., Mendes M., Freitas M., Faria J., Figueiredo J., J. Catal., 2002, 209, 355.

    Article  CAS  Google Scholar 

  19. Hasa B., Martino E., Vakros J., Trakakis G., Galiotis C., Katsaounis A., ChemElectroChem., 2019, 6, 4970.

    Article  CAS  Google Scholar 

  20. Fang B. Z., Chaudhari N. K., Kim M. S., Kim J. H., Yu J. S., J. Am. Chem. Soc., 2009, 131, 15330.

    Article  CAS  PubMed  Google Scholar 

  21. Ortíz-Herrera J. C., Tellez-Cruz M. M., Solorza-Feria O., Medina D. I., Catalysts., 2022, 12, 477.

    Article  Google Scholar 

  22. Antolini E., Appl. Catal. B: Environ., 2009, 88, 1.

    Article  CAS  Google Scholar 

  23. Auer E., Freund A., Pietsch J., Tacke T., Appl. Catal. A Gen., 1998, 173, 259.

    Article  CAS  Google Scholar 

  24. Singh P., Sharma R., Khalid M., Goyal R., Sarı A., Tyagi V., Sol. Energy Mater. Sol. Cells, 2022, 246, 111896.

    Article  CAS  Google Scholar 

  25. Tang J., Liu J., Torad N. L., Kimura T., Yamauchi Y., Nano Today, 2014, 9, 305.

    Article  CAS  Google Scholar 

  26. You P., Kamarudin S., Chem. Eng. J., 2017, 309, 489.

    Article  CAS  Google Scholar 

  27. Zaman S., Wang M., Liu H. J., Sun F. M., Yu Y., Shui J. l., Chen M., Wang H. J., Trends Chem., 2022, 2, 886.

    Article  Google Scholar 

  28. Minsuk K., Nam P. J., Hyuk K., J. Power Sources, 2006, 163, 93.

    Article  Google Scholar 

  29. Gerber I. C., Serp P., Chem. Rev., 2022, 120, 1250.

    Article  Google Scholar 

  30. Huang Z. N., Yao Y. G., Pang Z. Q., Yuan Y. F., Li T. Y., He K., Hu X. B., Cheng J., Yao W. T., Liu Y. Z., Nat. Commun., 2020, 11, 6373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y. J., Fang B. Z., Li H., Bi X. T. T., Wang H. J., Prog. Mater. Sci., 2016, 82, 445

    Article  CAS  Google Scholar 

  32. Liao S. J., Hou S. Y., Zou H. B., Dang D., Tian X. L., Nan H. X., Shu T., Du L., Int. J. Hydrogen Energy, 2016, 41, 9191.

    Article  Google Scholar 

  33. Chen Y. Z., Zhang S. M., Jung J. C. Y., Zhang J. J., Prog. Energy Combust. Sci., 2023, 98, 101101.

    Article  Google Scholar 

  34. **e M. H., Shi Y. F., Wang C. X., Chen R. H., Shen M., **a Y. N., ACS Appl. Mater. Interfaces., 2021, 13, 51988.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S., Liu S., Huang J., Zhou H., Liu X., Tan P., Chen H., Liang Y., Pan J., J. Energy Chem., 2023, 84, 486.

    Article  CAS  Google Scholar 

  36. Deng X. T., Yin S. F., Wu X. B., Sun M., **e Z. Y., Huang Q. Z., Electrochim. Acta, 2018, 283, 987.

    Article  CAS  Google Scholar 

  37. Suh W. K., Ganesan P., Son B., Kim H., Shanmugam S., Int. J. Hydrogen Energy, 2016, 41, 12983.

    Article  CAS  Google Scholar 

  38. Deng Z. P., Pang W. Y., Gong M. X., ** Z. H., Wang X. L., J. Energy Chem., 2022, 66, 16.

    Article  CAS  Google Scholar 

  39. Bai P., Wang P., Mu J. R., **e Z. N., Du C. F., Su Y. G., ACS Appl. Mater. Interfaces, 2023, 15, 35117.

    Article  CAS  PubMed  Google Scholar 

  40. Pullamsetty A., Sundara R., J. Colloid Interface Sci., 2016, 479, 260.

    Article  CAS  PubMed  Google Scholar 

  41. Nesselberger M., Ashton S., Meier J. C., Katsounaros I., Mayrhofer K. J., Arenz M., J. Am. Chem. Soc., 2011, 133, 17428.

    Article  CAS  PubMed  Google Scholar 

  42. Hou H. I., Shao G., Yang W. Y., Wong W. Y., J. Mater. Sci., 2020, 113, 100671.

    CAS  Google Scholar 

  43. Garlyyev B., Fichtner J., Piqué O., Schneider O., Bandarenka A. S., Calle-Vallejo F., Chem. Sci., 2019, 10, 8060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohebali A., Abdouss M., Zahedi P., Chem. Pap., 2018, 72, 3005.

    Article  CAS  Google Scholar 

  45. Hu Y. M., Zhu M. Z., Luo X., Wu G., Chao T. T., Qu Y. T., Zhou F. Y., Sun R. B., Han X., Li H., Angew. Chem. Int. Ed., 2021, 60, 6533.

    Article  CAS  Google Scholar 

  46. Zhang L. B., Wang X. R., Zhu H., Prog. Nat. Sci. Mater. Int., 2020, 30, 890.

    Article  CAS  Google Scholar 

  47. Liu Y., Chen N. J., Wang F. H., Cai Y. Z., Zhu H., New J. Chem., 2017, 41, 6585.

    Article  CAS  Google Scholar 

  48. Gahtori J., Tucker C. L., Khan T. S., De S. C. C., Rocha T., Bordoloi A., ACS Appl. Mater. Interfaces, 2022, 14, 38905.

    Article  CAS  PubMed  Google Scholar 

  49. **ang Z. H., Xue Y. H., Cao D. P., Huang L., Chen J. F., Dai L. M., Angew. Chem. Int. Ed., 2014, 53, 2433.

    Article  CAS  Google Scholar 

  50. Qiu J. J., Duan Y., Li S. Y., Zhao H. P., Ma W. H., Shi W. D., Lei Y., Nano-Micro Lett., 2024, 16, 130.

    Article  CAS  Google Scholar 

  51. Dai Y. Q., Lu P., Cao Z. M., Campbell C. T., **a Y. N., Chem. Soc. Rev., 2018, 47, 4314.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 22102086), the Shandong Provincial Natural Science Fund for Excellent Young Scientists Fund Program (Overseas), China (No. 2023HWYQ-059), the Shandong Provincial Natural Science Foundation, China (No. ZR2022MB028), the Major Fundamental Research Project of Shandong Natural Science Fund, China (No. ZR2023ZD54), the Taishan Scholar Program of Shandong Province, China (No. tsqnz20221113), the Fundamental Research Funds for the Central Universities, China (Nos. 862201013152, 202412008), the Youth Innovation Plan of Shandong Province, China(No. 2022KJ054), and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Cao, Chun-Chao Hou or Qiang Xu.

Ethics declarations

XU Qiang is an editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Electronic Supplementary Information

40242_2024_4133_MOESM1_ESM.pdf

Supporting Information: Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, X., Sun, Q. et al. Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4133-2

Keywords

Navigation