Log in

Functionalizable and Recyclable Aliphatic Polycarbonates Derived from Biomass Feedstocks and CO2

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Two bio-based seven-membered cyclic carbonate monomers M1 and M2 were synthesized in three steps from myrcene, which could produce polycarbonates via ring-opening polymerization using metal or organic catalysts. The functionalizable olefin moieties in resulting polycarbonates have driven post-polymerization modifications via radical cross-linking and hydrogenation, enabling the resulting polymers with tunable thermal properties. More importantly, the chemical recycling of P(M)s was achieved through “monomer → polymer ⇄ dimer”, which presented a platform for the synthesis of chemically recyclable biobased polycarbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu C., Zhang X., Medda F., Waste Manage., (Oxford), 2021, 121, 42

    Google Scholar 

  2. Li L., Luo H., Shao Z., Zhou H., Lu J., Chen J., Huang C., Zhang S., Liu X., **a L., Li J., Wang H., Sun Y., J. Am. Chem. Soc., 2023, 145, 1847

    CAS  PubMed  Google Scholar 

  3. Bornscheuer U. T., Science, 2016, 351, 1154

    CAS  PubMed  Google Scholar 

  4. Shang Z., Wang R., Zhang X., Tu Y., Sheng C., Yuan H., Wen L., Li Y., Zhang J., Wang X., Yang G., Feng Y., Ren G., Sci. Total Environ., 2023, 875, 162674

    CAS  PubMed  Google Scholar 

  5. Wang Z., Ganewatta M. S., Tang C., Prog. Polym. Sci., 2020, 101, 101197

    CAS  Google Scholar 

  6. Hayes G., Laurel M., MacKinnon D., Zhao T., Houck H. A., Becer C. R., Chem. Rev., 2023, 123, 2609

    CAS  PubMed  Google Scholar 

  7. Haque F. M., Ishibashi J. S. A., Lidston C. A. L., Shao H., Bates F. S., Chang A. B., Coates G. W., Cramer C. J., Dauenhauer P. J., Dichtel W. R., Ellison C. J., Gormong E. A., Hamachi L. S., Hoye T. R., ** M., Kalow J. A., Kim H. J., Kumar G., LaSalle C. J., Liffland S., Lipinski B. M., Pang Y., Parveen R., Peng X., Popowski Y., Prebihalo E. A., Reddi Y., Reineke T. M., Sheppard D. T., Swartz J. L., Tolman W. B., Vlaisavljevich B., Wissinger J., Xu S., Hillmyer M. A., Chem. Rev., 2022, 122, 6322

    CAS  PubMed  Google Scholar 

  8. Ganewatta M. S., Wang Z., Tang C., Nat. Rev. Chem., 2021, 5, 753

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cywar R. M., Rorrer N. A., Hoyt C. B., Beckham G. T., Chen E. Y. X., Nat. Rev. Chem., 2022, 7, 83

    CAS  Google Scholar 

  10. Zhang Q., Song M., Xu Y., Wang W., Wang Z., Zhang L., Prog. Polym. Sci., 2021, 120, 101430

    CAS  Google Scholar 

  11. Cui S., Borgemenke J., Liu Z., Li Y., J. CO2Util., 2019, 34, 40

    CAS  Google Scholar 

  12. Yu W., Maynard E., Chiaradia V., Arno M. C., Dove A. P., Chem. Rev., 2021, 121, 10865

    CAS  PubMed  Google Scholar 

  13. Noreen A., Zia K. M., Zuber M., Tabasum S., Zahoor A. F., Prog. Org. Coat., 2016, 91, 25

    CAS  Google Scholar 

  14. Lu H., Dun C., Jariwala H., Wang R., Cui P., Zhang H., Dai Q., Yang S., Zhang H., J. Controlled Release, 2022, 350, 748

    CAS  Google Scholar 

  15. Douka A., Vouyiouka S., Papaspyridi L.-M., Papaspyrides C. D., Prog. Polym. Sci., 2018, 79, 1

    CAS  Google Scholar 

  16. Li H., Guillaume S. M., Carpentier J.-F., Chem. Eur. J., 2022, 17, e202200641

    CAS  Google Scholar 

  17. Siragusa F., Detrembleur C., Grignard B., Polym. Chem., 2023, 14, 1164

    CAS  Google Scholar 

  18. Liu Y., Lu X.-B., Chem. Eur. J., 2023, 29, e202203635

    CAS  PubMed  Google Scholar 

  19. Liu Y., Lu X.-B., J. Polym. Sci., 2022, 60, 3256

    CAS  Google Scholar 

  20. Jehanno C., Alty J. W., Roosen M., de Meester S., Dove A. P., Chen E. Y. X., Leibfarth F. A., Sardon H., Nature, 2022, 603, 803

    CAS  PubMed  Google Scholar 

  21. Zhu J.-B., Watson E. M., Tang J., Chen E. Y. X., Science, 2018, 360, 398

    CAS  PubMed  Google Scholar 

  22. Tu Y.-M., Wang X.-M., Yang X., Fan H.-Z., Gong F.-L., Cai Z., Zhu J.-B., J. Am. Chem. Soc., 2021, 143, 20591

    CAS  PubMed  Google Scholar 

  23. Fan H.-Z., Yang X., Chen J.-H., Tu Y.-M., Cai Z., Zhu J.-B., Angew. Chem. Int. Ed., 2022, 61, e202117639

    CAS  Google Scholar 

  24. Dai J., **ong W., Du M.-R., Wu G., Cai Z., Zhu J.-B., Sci. China: Chem., 2023, 66, 251

    CAS  Google Scholar 

  25. Tu Y.-M., Gong F.-L., Wu Y.-C., Cai Z., Zhu J.-B., Nat. Commun., 2023, 14, 3198

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang X., Fan H.-Z., Cai Z., Zhang Q., Zhu J.-B., Chin. J. Chem., 2022, 40, 2973

    CAS  Google Scholar 

  27. Gandini A., Lacerda T. M., Prog. Polym. Sci., 2015, 48, 1

    CAS  Google Scholar 

  28. Wahlen C., Frey H., Macromolecules, 2021, 54, 7323

    CAS  Google Scholar 

  29. della Monica F., Kleij A. W., Polym. Chem., 2020, 11, 5109

    CAS  Google Scholar 

  30. Wilbon P. A., Chu F., Tang C., Macromol. Rapid Commun., 2013, 34, 8

    CAS  PubMed  Google Scholar 

  31. Luk S. B., Azevedo L. A., Maric M., React. Funct. Polym., 2021, 162, 104871

    CAS  Google Scholar 

  32. Dev A., Rösler A., Schlaad H., Polym. Chem., 2021, 12, 3084

    CAS  Google Scholar 

  33. Hulnik M. I., Vasilenko I. V., Radchenko A. V., Peruch F., Ganachaud F., Kostjuk S. V., Polym. Chem., 2018, 9, 5690

    CAS  Google Scholar 

  34. Cawse J. L., Stanford J. L., Still R. H., Polymer, 1987, 28, 368

    CAS  Google Scholar 

  35. Wu Y.-C., Fan H.-Z., Zhang W., Wang M.-Y., Cai Z., Zhu J.-B., Macromolecules, 2022, 55, 9232

    CAS  Google Scholar 

  36. Zhang W., Dai J., Wu Y.-C., Chen J.-X., Shan S.-Y., Cai Z., Zhu J.-B., ACS Macro Lett., 2022, 11, 173

    CAS  PubMed  Google Scholar 

  37. Behr A., Brehme V. A., Adv. Synth. Catal., 2002, 344, 525

    CAS  Google Scholar 

  38. Li C., Sablong R. J., Koning C. E., Angew. Chem. Int. Ed., 2016, 55, 11572

    CAS  Google Scholar 

  39. DeRosa C. A., Luke A. M., Anderson K., Reineke T. M., Tolman W. B., Bates F. S., Hillmyer M. A., Macromolecules, 2021, 54, 5974

    CAS  Google Scholar 

  40. Guerin W., Diallo A. K., Kirilov E., Helou M., Slawinski M., Brusson J.-M., Carpentier J.-F., Guillaume S. M., Macromolecules, 2014, 47, 4230

    CAS  Google Scholar 

  41. Fan H.-Z., Yang X., Wu Y.-C., Cao Q., Cai Z., Zhu J.-B., Polym. Chem., 2023, 14, 747

    CAS  Google Scholar 

  42. Gregory G. L., Jenisch L. M., Charles B., Kociok-Köhn G., Buchard A., Macromolecules, 2016, 49, 7165

    CAS  Google Scholar 

  43. Felder S. E., Redding M. J., Noel A., Grayson S. M., Wooley K. L., Macromolecules, 2018, 51, 1787

    CAS  Google Scholar 

  44. Mees M. A., Hoogenboom R., Polym. Chem., 2018, 9, 4968

    CAS  Google Scholar 

  45. Galvin C. J., Genzer J., Prog. Polym. Sci., 2012, 37, 871

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.22071163) and the Fundamental Research Funds for the Central Universities of China (Nos.YJ201924, YJ202209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongzheng Cai or Jian-Bo Zhu.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Fan, H., Shan, S. et al. Functionalizable and Recyclable Aliphatic Polycarbonates Derived from Biomass Feedstocks and CO2. Chem. Res. Chin. Univ. 39, 809–815 (2023). https://doi.org/10.1007/s40242-023-3165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3165-3

Keywords

Navigation