Log in

Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes.

Objective

This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols.

Methods

Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria.

Results

This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications.

Conclusion

Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gadzama AA, Nyandaiti Y, Mshelia DS. Role of a diagnostic laboratory in the management of diabetes mellitus. Niger J Clin Pract. 2008;11(1):68–72.

    Google Scholar 

  2. Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol. 2014;1(126):211–22. https://doi.org/10.1016/B978-0-444-53480-4.00015-1.

    Article  Google Scholar 

  3. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22. https://doi.org/10.1038/nrdp.2015.19.

    Article  Google Scholar 

  4. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90. https://doi.org/10.1038/s41581-020-0278-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ranasinghe P, Jayawardena R, Gamage N, Sivanandam N, Misra A. Prevalence and trends of the diabetes epidemic in urban and rural India: A pooled systematic review and meta-analysis of 1.7 million adults. Ann Epidemiol. 2021;1(58):128–48. https://doi.org/10.1016/j.annepidem.2021.02.016.

    Article  Google Scholar 

  6. Wang ZQ, **g LL, Yan JC, Sun Z, Bao ZY, Shao C, Pang QW, Geng Y, Zhang LL, Li LH. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018;35(5):443–50. https://doi.org/10.1007/s10719-018-9831-x.

    Article  CAS  PubMed  Google Scholar 

  7. Ramachandran S, Vinitha A, Kartha CC. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol. 2016;15(1):1–9. https://doi.org/10.1186/s12933-016-0467-5.

    Article  CAS  Google Scholar 

  8. Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res. 2018;123(7):886–904. https://doi.org/10.1161/CIRCRESAHA.118.312806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep. 2014;16(7):1–8. https://doi.org/10.1007/s11883-014-0419-z.

    Article  CAS  Google Scholar 

  10. Cho YR, Ann SH, Won KB, Park GM, Kim YG, Yang DH, Kang JW, Lim TH, Kim HK, Choe J, Lee SW. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep. 2019;9(1):1–7. https://doi.org/10.1038/s41598-019-42700-1.

    Article  CAS  Google Scholar 

  11. Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447–67. https://doi.org/10.1210/er.2018-00141.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Evans JL, Balkan B, Chuang E, Rushakoff RJ. Oral and injectable (non-insulin) pharmacological agents or type 2 diabetes. Endotext. South Dartmouth (MA). 2000. https://www.researchgate.net/publication/305487888

  13. Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α- glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem. 2019;1(86):305–15. https://doi.org/10.1016/j.bioorg.2019.02.009.

    Article  CAS  Google Scholar 

  14. Campbell RK, White JR Jr, Saulie BA. Metformin: a new oral biguanide. Clin Ther. 1996;18(3):360–71. https://doi.org/10.1016/S0149-2918(96)80017-8.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang F, Lavan BE, Gregoire FM. Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects. PPAR Res. 2007;2007. https://doi.org/10.1155/2007/32696.

  16. Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol. 2011;55(1–3):10–6. https://doi.org/10.1016/j.vph.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  17. Harsch IA, Kaestner RH, Konturek PC. Hypoglycemic side effects of sulfonylureas and repaglinide in ageing patients-knowledge and self-management. J Physiol Pharmacol. 2018;69(4):647–9. https://doi.org/10.26402/jpp.2018.4.15.

    Article  CAS  Google Scholar 

  18. Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res. 2022;177:106114. https://doi.org/10.1016/j.phrs.2022.106114.

    Article  CAS  PubMed  Google Scholar 

  19. Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential effect of DPP-4 inhibitors towards hepatic diseases and associated glucose intolerance. Diabetes Metab Syndr Obes: Targets Ther. 2022;1:1845–64. https://doi.org/10.2147/DMSO.S369712.

    Article  Google Scholar 

  20. Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013. https://doi.org/10.1155/2013/627375.

  21. Sharma P, Hajam YA, Kumar R, Rai S. Complementary and alternative medicine for the treatment of diabetes and associated complications: A review on therapeutic role of polyphenols. Phytomedicine Plus. 2022;2(1):100188. https://doi.org/10.1016/j.phyplu.2021.100188.

    Article  Google Scholar 

  22. Belščak-Cvitanović A, Durgo K, Huđek A, Bačun-Družina V, Komes D. Overview of polyphenols and their properties. In: Polyphenols: Properties, recovery, and applications. Woodhead Publishing; 2018. p. 3–44. https://doi.org/10.1016/B978-0-12-813572-3.00001-4.

  23. Zhou BO, Wu LM, Yang LI, Liu ZL. Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic Biol Med. 2005;38(1):78–84. https://doi.org/10.1016/j.freeradbiomed.2004.09.023.

    Article  CAS  PubMed  Google Scholar 

  24. Dominguez Avila JA, Rodrigo Garcia J, Gonzalez Aguilar GA, De la Rosa LA. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules. 2017;22(6):903. https://doi.org/10.3390/molecules22060903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edirisinghe I, Burton-Freeman B. Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. J Berry Res. 2016;6(2):237–50. https://doi.org/10.3233/JBR-160137.

    Article  Google Scholar 

  26. Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol. 2018;152:11–20. https://doi.org/10.1016/j.bcp.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int. 2022;157:111202. https://doi.org/10.1016/j.foodres.2022.111202.

    Article  CAS  PubMed  Google Scholar 

  28. Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev. 2015;2015:340520. https://doi.org/10.1155/2015/340520.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract. 2006;60(3):308–14. https://doi.org/10.1111/j.1368-5031.2006.00825.x.

    Article  CAS  PubMed  Google Scholar 

  30. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):111–3. https://doi.org/10.1016/j.jsps.2015.03.013.

    Article  Google Scholar 

  31. Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radical Biol Med. 2006;40(2):183–92. https://doi.org/10.1016/j.freeradbiomed.2005.06.018.

    Article  CAS  Google Scholar 

  32. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016;24(5):547–53. https://doi.org/10.1016/j.jsps.2015.03.013.

    Article  PubMed  Google Scholar 

  33. Agresti A, Lupo R, Bianchi ME, Müller S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun. 2003;302(2):421–6. https://doi.org/10.1016/S0006-291X(03)00184-0.

    Article  CAS  PubMed  Google Scholar 

  34. Domingueti CP, Dusse LM, das Graças Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30(4):738–45. https://doi.org/10.1016/j.jdiacomp.2015.12.018.

    Article  PubMed  Google Scholar 

  35. Siti HN, Kamisah Y, Kamsiah JJ. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015;1(71):40–56. https://doi.org/10.1016/j.vph.2015.03.005.

    Article  CAS  Google Scholar 

  36. Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, Lee BJ, Perkins RM, Rossing P, Sairenchi T, Tonelli M. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. The Lancet. 2012;380(9854):1662–73. https://doi.org/10.1016/S0140-6736(12)61350-6.

    Article  Google Scholar 

  37. Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Republic Iran. 2017;31:134. https://doi.org/10.14196/mjiri.31.134.

    Article  Google Scholar 

  38. Dragan S, Andrica F, Serban MC, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem. 2015;22(1):14–22. https://doi.org/10.2174/0929867321666140826115422.

    Article  CAS  PubMed  Google Scholar 

  39. Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules. 2016;21(6):708. https://doi.org/10.3390/molecules21060708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun C, Zhao C, Guven EC, Paoli P, Simal-Gandara J, Ramkumar KM, Wang S, Buleu F, Pah A, Turi V, Damian G. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers. 2020;1(1):18–44. https://doi.org/10.1002/fft2.15.

    Article  Google Scholar 

  41. Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M. Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid Med Cell Longev. 2015;2015:1–13. https://doi.org/10.1155/2015/181260.

    Article  Google Scholar 

  42. Diebolt M, Bucher B, Andriantsitohaina R. Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension. 2001;38(2):159–65. https://doi.org/10.1161/01.HYP.38.2.159.

    Article  CAS  PubMed  Google Scholar 

  43. Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11(4):1365–402. https://doi.org/10.3390/ijms11041365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Canalis MB, Baroni MV, León AE, Ribotta PD. Effect of peach puree incorportion on cookie quality and on simulated digestion of polyphenols and antioxidant properties. Food Chem. 2020;15(333):127464. https://doi.org/10.1016/j.foodchem.2020.127464.

    Article  CAS  Google Scholar 

  45. Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr. 2021;62(2):325–52. https://doi.org/10.1080/10408398.2020.1815644.

    Article  CAS  Google Scholar 

  46. Chieng D, Kistler PM. Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc Med. 2021. https://doi.org/10.1016/j.tcm.2021.08.004.

    Article  PubMed  Google Scholar 

  47. Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Gheldiu AM, Toma VA, Oniga I. Phytochemical profile, antioxidant, cardioprotective and nephroprotective activity of romanian chicory extract. Plants. 2020;10(1):64. https://doi.org/10.3390/plants10010064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tasic N, Jakovljevic VL, Mitrovic M, D**djic B, Tasic D, Dragisic D, Citakovic Z, Kovacevic Z, Radoman K, Zivkovic V, Bolevich S. Black chokeberry Aronia melanocarpa extract reduces blood pressure, glycemia and lipid profile in patients with metabolic syndrome: a prospective controlled trial. Mol Cell Biochem. 2021;476(7):2663–73. https://doi.org/10.1007/s11010-021-04106-4.

    Article  CAS  PubMed  Google Scholar 

  49. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47. https://doi.org/10.1093/ajcn/79.5.727.

    Article  CAS  PubMed  Google Scholar 

  50. González‐Sarrías A, Tomás‐Barberán FA, García‐Villalba R. Structural diversity of polyphenols and distribution in foods. Dietary Polyphenols: Their Metabolism and Health Effects. 2020:1–29. https://doi.org/10.1002/9781119563754.ch1.

  51. Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: the role of bioavailability. Nutrients. 2021;13:273. https://doi.org/10.3390/nu13010273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu B, Liu X, Zhang C, Zeng X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J Food Drug Anal. 2017;25(1):3–15. https://doi.org/10.1016/j.jfda.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  53. Corrêa TA, Rogero MM, Hassimotto NM, Lajolo FM. The two-way polyphenols- microbiota interactions and their effects on obesity and related metabolic diseases. Front Nutr. 2019;6:188. https://doi.org/10.3389/fnut.2019.00188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hussain MB, Hassan S, Waheed M, Javed A, Farooq MA, Tahir A. Bioavailability and metabolic pathway of phenolic compounds. In: Plant Physiological Aspects of Phenolic compounds. IntechOpen; 2019. https://doi.org/10.5772/intechopen.84745.

  55. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24(2):370. https://doi.org/10.3390/molecules24020370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holčapek M, Kolářová L, Nobilis M. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem. 2008;391(1):59–78. https://doi.org/10.1007/s00216-008-1962-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pasinetti GM, Singh R, Westfall S, Herman F, Faith J, Ho L. The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. J Alzheimer’s Dis. 2018;63(2):409–21. https://doi.org/10.3233/JAD-171151.

    Article  CAS  Google Scholar 

  58. Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact on human health. Nutrients. 2020;12(7):1908. https://doi.org/10.3390/nu12071908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Magrone T, Magrone M, Russo MA, Jirillo E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: in vitro and in vivo studies. Antioxidants. 2019;9(1):35. https://doi.org/10.3390/antiox9010035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Irfan A, Imran M, Khalid M, Ullah MS, Khalid N, Assiri MA, Thomas R, Muthu S, Basra MA, Hussein M, Al-Sehemi AG. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. J Saudi Chem Soc. 2021;25(8):101277. https://doi.org/10.1016/j.jscs.2021.101277.

    Article  CAS  Google Scholar 

  61. Parcheta M, Świsłocka R, Orzechowska S, Akimowicz M, Choińska R, Lewandowski W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials. 2021;14(8):1984. https://doi.org/10.3390/ma14081984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Llorent-Martinez EJ, Zengin G, Fernández-de Córdova ML, Bender O, Atalay A, Ceylan R, Mollica A, Mocan A, Uysal S, Guler GO, Aktumsek A. Traditionally used Lathyrus species: phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and in silico studies of L. czeczottianus and L. nissolia. Front Pharmacol. 2017;8:83. https://doi.org/10.3389/fphar.2017.00083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh A, Yau YF, Leung KS, El-Nezami H, Lee JC. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain–liver–gut axis. Antioxidants. 2020;9(8):669. https://doi.org/10.3390/antiox9080669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hano C, Tungmunnithum D. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases. Medicines. 2020;7(5):26. https://doi.org/10.3390/medicines7050026.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jimenez-Torres J, Alcalá-Diaz JF, Torres-Peña JD, Gutierrez-Mariscal FM, Leon- Acuña A, Gómez-Luna P, Fernández-Gandara C, Quintana-Navarro GM, Fernandez- Garcia JC, Perez-Martinez P, Ordovas JM. Mediterranean diet reduces atherosclerosis progression in coronary heart disease: an analysis of the CORDIOPREV randomized controlled trial. Stroke. 2021;52(11):3440–9. https://doi.org/10.1161/STROKEAHA.120.033214.

    Article  CAS  PubMed  Google Scholar 

  66. Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, Cortina JL, Saurina J. Polyphenols and their potential role to fight viral diseases: An overview. Sci Total Environ. 2021;801:149719. https://doi.org/10.1016/j.scitotenv.2021.149719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taïlé J, Arcambal A, Clerc P, Gauvin-Bialecki A, Gonthier MP. Medicinal plant polyphenols attenuate oxidative stress and improve inflammatory and vasoactive markers in cerebral endothelial cells during hyperglycemic condition. Antioxidants. 2020;9(7):573. https://doi.org/10.3390/antiox9070573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hollman PC. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch Biochem Biophys. 2014;1(559):100–5. https://doi.org/10.1016/j.abb.2014.04.013.

    Article  CAS  Google Scholar 

  69. Maffettone A, Rinaldi M, Fontanella A. Postprandial hyperglycemia: a new frontier in diabetes management? Ital J Med. 2018;12(2):108–15. https://doi.org/10.4081/itjm.2018.961.

    Article  CAS  Google Scholar 

  70. Giugliano D, Ceriello A, Esposito K. Glucose metabolism and hyperglycemia. Am J Clin Nutr. 2008;87(1):217S-S222. https://doi.org/10.1093/ajcn/87.1.217S.

    Article  CAS  PubMed  Google Scholar 

  71. Gerich JE. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes. 2002;51(suppl_1):S117-21. https://doi.org/10.2337/diabetes.51.2007.S117.

    Article  CAS  PubMed  Google Scholar 

  72. Kwon YI, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem. 2008;32(1):15–31. https://doi.org/10.1111/j.1745-4514.2007.00165.x.

    Article  CAS  Google Scholar 

  73. Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem. 2012;60(36):8924–9. https://doi.org/10.1021/jf301147n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang X, Kong F. Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. J Sci Food Agric. 2016;96(3):777–82. https://doi.org/10.1002/jsfa.7147.

    Article  CAS  PubMed  Google Scholar 

  75. Bhatia A, Singh B, Arora R, Arora S. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complement Altern Med. 2019;19(1):1–9. https://doi.org/10.1186/s12906-019-2482-z.

    Article  Google Scholar 

  76. Cirkovic Velickovic TD, Stanic-Vucinic DJ. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Comp Rev Food Sci Food Saf. 2018;17(1):82–103. https://doi.org/10.1111/1541-4337.12320.

    Article  CAS  Google Scholar 

  77. Deis L, Quiroga AM, De Rosas MI. Coloured compounds in fruits and vegetables and health. In: Psychiatry and Neuroscience Update 2021. Springer, Cham; pp 343–358. https://doi.org/10.1007/978-3-030-61721-9_25.

  78. Dall’Asta M, Bayle M, Neasta J, Scazzina F, Bruni R, Cros G, Del Rio D, Oiry C. Protection of pancreatic β-cell function by dietary polyphenols. Phytochem Rev. 2015;14(6):933–59. https://doi.org/10.1007/s11101-015-9429-x.

    Article  CAS  Google Scholar 

  79. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β- cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52(3):581–7. https://doi.org/10.2337/diabetes.52.3.581.

    Article  CAS  PubMed  Google Scholar 

  80. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37. https://doi.org/10.3389/fendo.2013.00037.

    Article  Google Scholar 

  81. Todorovic V, Milenkovic M, Vidovic B, Todorovic Z, Sobajic S. Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J Food Sci. 2017;82(4):1020–7. https://doi.org/10.1111/1750-3841.13672.

    Article  CAS  PubMed  Google Scholar 

  82. Bahar E, Akter KM, Lee GH, Lee HY, Rashid HO, Choi MK, Bhattarai KR, Hossain MMM, Ara J, Mazumder K, Raihan O. β-Cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth S Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species (ROS). BMC Complement Alternat Med. 2017;17(1):1–12. https://doi.org/10.1186/s12906-017-1697-0.

    Article  CAS  Google Scholar 

  83. Williamson G, Sheedy K. Effects of polyphenols on insulin resistance. Nutrients. 2020;12(10):3135. https://doi.org/10.3390/nu12103135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Freeman AM, Pennings N. Insulin Resistance. In: StatPearls. StatPearls Publishing, Treasure Island (FL). 2022.

  85. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378–400. https://doi.org/10.3390/ijms16010378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patel TP, Rawal K, Bagchi AK, Akolkar G, Bernardes N, Dias DD, Gupta S, Singal PK. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev. 2016;21(1):11–23. https://doi.org/10.1007/s10741-015-9515-6.

    Article  CAS  PubMed  Google Scholar 

  87. Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, de Mejia EG. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food Chemwical Toxicol. 2019;132:110672. https://doi.org/10.1016/j.fct.2019.110672.

    Article  CAS  Google Scholar 

  88. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079–86. https://doi.org/10.2337/diabetes.53.8.2079.

    Article  CAS  PubMed  Google Scholar 

  89. Jaiyesimi KF, Agunbiade OS, Ajiboye BO, Afolabi OB. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J Diabetes Metab Disord. 2020;19(2):1543–56. https://doi.org/10.1007/s40200-020-00690-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hatfield J. Advanced glycation end-products (AGEs) in hyperglycemic patients. Journal of Young Investigators. 2005. https://www.jyi.org/2005-october/2017/11/6/

  91. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3–21. https://doi.org/10.1016/j.diabres.2004.09.004.

    Article  CAS  PubMed  Google Scholar 

  92. Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://doi.org/10.1007/s10522-019-09808-3.

    Article  CAS  PubMed  Google Scholar 

  93. Khangholi S, Majid FA, Berwary NJ, Ahmad F, Abd Aziz RB. The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition. Planta Med. 2016;82(01/02):32–45. https://doi.org/10.1055/s-0035-1558086.

    Article  CAS  PubMed  Google Scholar 

  94. Anwar S, Khan S, Almatroudi A, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol Biol Rep. 2021;48(1):787–805. https://doi.org/10.1007/s11033-020-06084-0.

    Article  CAS  PubMed  Google Scholar 

  95. Li SH, Zhao P, Tian HB, Chen LH, Cui LQ. Effect of grape polyphenols on blood pressure: a meta-analysis of randomized controlled trials. PLoS ONE. 2015;10(9):e0137665. https://doi.org/10.1371/journal.pone.0137665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grzegorczyk-Karolak I, Gołąb K, Gburek J, Wysokińska H, Matkowski A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules. 2016;21(6):739. https://doi.org/10.3390/molecules21060739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spínola V, Castilho PC. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). Phytochemistry. 2017;143:29–35. https://doi.org/10.1016/j.phytochem.2017.07.006.

    Article  CAS  PubMed  Google Scholar 

  98. Qin C, Li Y, Zhang Y, Liu L, Wu Z, Weng P. Insights into oat polyphenols constituent against advanced glycation end products mechanism by spectroscopy and molecular interaction. Food Biosci. 2021;43:101313. https://doi.org/10.1016/j.fbio.2021.101313.

    Article  CAS  Google Scholar 

  99. Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M. Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: a double-blind randomized placebo-controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med. 2009;26(5):526–31. https://doi.org/10.1111/j.1464-5491.2009.02727.x.

    Article  CAS  PubMed  Google Scholar 

  100. Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx M, Heussen N, Gross HB, Keen CL, Schroeter H, Kelm M. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double- masked, randomized, controlled trial. J Am Coll Cardiol. 2008;51:2141–9. https://doi.org/10.1016/j.jacc.2008.01.059.

    Article  CAS  PubMed  Google Scholar 

  101. Zibadi S, Rohdewald PJ, Park D, Watson RR. Reduction of cardiovascular risk factors in subjects with type 2 diabetes by Pycnogenol supplementation. Nutr Res. 2008;28(5):315–20. https://doi.org/10.1016/j.nutres.2008.03.003.

    Article  CAS  PubMed  Google Scholar 

  102. Fukuda T, Fukui M, Tanaka M, Senmaru T, Iwase H, Yamazaki M, Marunaka Y. Effect of Brazilian green propolis in patients with type 2 diabetes: A double-blind randomized placebo-controlled study. Biomed Rep. 2015;3(3):355–60. https://doi.org/10.3892/br.2015.436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ogawa S, Matsumae T, Kataoka T, Yazaki Y, Yamaguchi H. Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial. Exp Ther Med. 2013;5(6):1566–72. https://doi.org/10.3892/etm.2013.1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ochiai R, Sugiura Y, Shioya Y, Otsuka K, Katsuragi Y, Hashiguchi T. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutr Res. 2014;34(2):155–9. https://doi.org/10.1016/j.nutres.2013.11.001.

    Article  CAS  PubMed  Google Scholar 

  105. Rakvaag E, Dragsted LO. Acute effects of light and dark roasted coffee on glucose tolerance: a randomized, controlled crossover trial in healthy volunteers. Eur J Nutr. 2016;55:2221–30. https://doi.org/10.1007/s00394-015-1032-9.

    Article  CAS  PubMed  Google Scholar 

  106. Chiva-Blanch G, Urpi-Sarda M, Ros E, Valderas-Martinez P, Casas R, Arranz S, ..., Estruch, R. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial. Clin Nutr. 2013;32(2):200–206. https://doi.org/10.1016/j.clnu.2012.08.022.

  107. Kianbakht S, Abasi B, Dabaghian FH. Anti-hyperglycemic effect of Vaccinium arctostaphylos in type 2 diabetic patients: A randomized controlled trial. Forschende Komplementärmedizin/Res Complement Med. 2013;20(1):17–22. https://doi.org/10.1159/000346607.

    Article  Google Scholar 

  108. Mellor DD, Madden LA, Smith KA, Kilpatrick ES, Atkin SL. High-polyphenol chocolate reduces endothelial dysfunction and oxidative stress during acute transient hyperglycaemia in Type 2 diabetes: a pilot randomized controlled trial. Diabet Med. 2013;30(4):478–83. https://doi.org/10.1111/dme.12030.

    Article  CAS  PubMed  Google Scholar 

  109. Santangelo C, Filesi C, Varì R, Scazzocchio B, Filardi T, Fogliano V, ..., Masella R. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: a possible involvement of reduced levels of circulating visfatin. J Endocrinol Invest. 2016:39:1295–1301. https://doi.org/10.1007/s40618-016-0506-9.

  110. Deguchi, Y. Effects of extract of guava leaves on the development of diabetes in the db/db mouse and on the postprandial blood glucose of human subjects. Nippon Nogeikagaku Kaishi. 1998;72:923–931. https://doi.org/10.1271/nogeikagaku1924.72.923

  111. Sales DS, Carmona F, de Azevedo BC, Taleb‐Contini SH, Bartolomeu ACD, Honorato FB, ..., Pereira AMS. Eugenia punicifolia (Kunth) DC. as an adjuvant treatment for Type‐2 diabetes mellitus: a non‐controlled, pilot study. Phytother Res. 2014:28(12):1816–1821. https://doi.org/10.1002/ptr.5206.

  112. Schulze C, Bangert A, Schwanck B, Vollert H, Blaschek W, Daniel H. Extracts and flavonoids from onion inhibit the intestinal sodium-coupled glucose transporter 1 (SGLT1) in vitro but show no anti-hyperglycaemic effects in vivo in normoglycaemic mice and human volunteers. J Funct Foods. 2015;18:117–28. https://doi.org/10.1016/j.jff.2015.06.037.

    Article  CAS  Google Scholar 

  113. Shi Y, Williamson G. Quercetin lowers plasma uric acid in pre- hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. Br J Nutr. 2016;115(5):800–6. https://doi.org/10.1017/S0007114515005310.

    Article  CAS  PubMed  Google Scholar 

  114. Zheng XX, Xu YL, Li SH, Hui R, Wu YJ, Huang XH. Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2013;97(4):750–62. https://doi.org/10.3945/ajcn.111.032573.

    Article  CAS  PubMed  Google Scholar 

  115. Zheng J, Cheng J, Zheng S, Feng Q, **ao X. Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol. 2018;9(9):472. https://doi.org/10.3389/fphar.2018.00472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dohadwala MM, Vita JA. Grapes and cardiovascular disease. J Nutr. 2009;139(9):1788S-S1793. https://doi.org/10.3945/jn.109.107474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mendonça, R. D., Carvalho, N. C., Martin-Moreno, J. M., Pimenta, A. M., Lopes, A. C. S., Gea, A., ... & Bes-Rastrollo, M. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The sun cohort study. Nutrition, Metabolism and Cardiovascular Diseases. 2019;29(1):69–78. https://doi.org/10.1016/j.numecd.2018.09.012.

  118. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12(1):1–9. https://doi.org/10.1186/2251-6581-12-43.

    Article  CAS  Google Scholar 

  119. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem. 2002;277(38):34933–40. https://doi.org/10.1074/jbc.M204672200.

    Article  CAS  PubMed  Google Scholar 

  120. Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′- AMP-activated protein kinase. J Biol Chem. 2007;282(41):30143–9. https://doi.org/10.1074/jbc.M702390200.

    Article  CAS  PubMed  Google Scholar 

  121. Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328–41. https://doi.org/10.1161/01.RES.0000256090.42690.05.

    Article  CAS  PubMed  Google Scholar 

  122. Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, Jia Z, Wang Y, Misra H, Liu D. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology. 2010;151(7):3026–37. https://doi.org/10.1210/en.2009-1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Szkudelski T, Szkudelska K. Anti-diabetic effects of resveratrol. Ann NY Acad Sci. 2011;1215:34–9. https://doi.org/10.1111/j.1749-6632.2010.05844.x.

    Article  CAS  PubMed  Google Scholar 

  124. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019;1(24):e00370. https://doi.org/10.1016/j.btre.2019.e00370.

    Article  Google Scholar 

  125. Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti- diabetic properties of flavonoids. Int J Mol Sci. 2016;17(4):569. https://doi.org/10.3390/ijms17040569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Zamoner A, Reginatto FH, Silva FR. Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J Pharm Pharmacol. 2013;65(8):1179–86. https://doi.org/10.1111/jphp.12066.

    Article  CAS  PubMed  Google Scholar 

  127. Lee YS, Lee S, Lee HS, Kim BK, Ohuchi K, Shin KH. Inhibitory effects of isorhamnetin-3-O-β-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol Pharm Bull. 2005;28(5):916–8. https://doi.org/10.1248/bpb.28.916.

    Article  CAS  PubMed  Google Scholar 

  128. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrit Metab. 2015;12:1–20. https://doi.org/10.1186/s12986-015-0057-7.

    Article  CAS  Google Scholar 

  129. Alotaibi BS, Ijaz M, Buabeid M, Kharaba ZJ, Yaseen HS, Murtaza G. Therapeutic effects and safe uses of plant-derived polyphenolic compounds in cardiovascular diseases: a review. Drug Des Dev Ther. 2021;15:4713. https://doi.org/10.2147/DDDT.S327238.

    Article  CAS  Google Scholar 

  130. Ali G, Maryam A, Omid S, Hawa ZJ. Flavonoid compounds and their antioxidant activity in extract of some tropical plants. J Med Plants Res. 2012;6(13):2639–43. https://doi.org/10.5897/JMPR11.1531.

    Article  CAS  Google Scholar 

  131. Tangney CC, Rasmussen HE. Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep. 2013;15(5):1. https://doi.org/10.1007/s11883-013-0324-x.

    Article  CAS  Google Scholar 

  132. Weichselbaum E, Wyness L, Stanner S. Apple polyphenols and cardiovascular disease–a review of the evidence. Nutr Bull. 2010;35(2):92–101. https://doi.org/10.1111/j.1467-3010.2010.01822.x.

    Article  Google Scholar 

  133. **a EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int J Mol Sci. 2010;11(2):622–46. https://doi.org/10.3390/ijms11020622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moreno-Luna R, Muñoz-Hernandez R, Miranda ML, Costa AF, Jimenez- Jimenez L, Vallejo-Vaz AJ, Muriana FJ, Villar J, Stiefel P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. J Hypertens. 2012;25(12):1299–304. https://doi.org/10.1038/ajh.2012.128.

    Article  CAS  Google Scholar 

  135. Tolić MT, Landeka Jurčević I, Panjkota Krbavčić I, Marković K, Vahčić N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol Biotechnol. 2015;53(2):171–9. https://doi.org/10.17113/ftb.53.02.15.3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aono Y, Kaido T, Kita N, Sugiyama K, Sumikawa M, Nakayama S, Fukushima Y. Dose-dependent effects of cacao polyphenol intake on lipid metabolism in rats. Plant Foods Hum Nutr. 2021;76(2):254–5. https://doi.org/10.1007/s11130-021-00893-9.

    Article  CAS  PubMed  Google Scholar 

  137. Kan J, Hui Y, **e W, Chen C, Liu Y, ** C. Lily bulbs’ polyphenols extract ameliorates oxidative stress and lipid accumulation in vitro and in vivo. J Sci Food Agric. 2021;101(12):5038–48. https://doi.org/10.1002/jsfa.11148.

    Article  CAS  PubMed  Google Scholar 

  138. Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High- Density Lipoprotein Intervention Trial. Am J Cardiol. 2000;86(12):19–22. https://doi.org/10.1016/S0002-9149(00)01464-8.

    Article  Google Scholar 

  139. Aoki F, Honda S, Kishida H, Kitano M, Arai N, Tanaka H, Yokota S, Nakagawa K, Asakura T, Nakai Y, Mae T. Suppression by licorice flavonoids of abdominal fat accumulation and body weight gain in high-fat diet-induced obese C57BL/6J mice. Biosci Biotechnol Biochem. 2007;71(1):206–14. https://doi.org/10.1271/bbb.60463.

    Article  CAS  PubMed  Google Scholar 

  140. Mukai Y, Sato S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J Nutr Biochem. 2011;22(1):16–21. https://doi.org/10.1016/j.jnutbio.2009.11.004.

    Article  CAS  PubMed  Google Scholar 

  141. Negishi H, Xu JW, Ikeda K, Njelekela M, Nara Y, Yamori Y. Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. J Nutr. 2004;134(1):38–42. https://doi.org/10.1093/jn/134.1.38.

    Article  CAS  PubMed  Google Scholar 

  142. Hu D, Yin C, Luo S, Habenicht AJ, Mohanta SK. Vascular smooth muscle cells contribute to atherosclerosis immunity. Front Immunol. 2019;10:1101. https://doi.org/10.3389/fimmu.2019.01101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li H, **a N, Hasselwander S, Daiber A. Resveratrol and vascular function. Int J Mol Sci. 2019;20(9):2155. https://doi.org/10.3390/ijms20092155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ho CC, Chen YC, Tsai MH, Tsai HT, Weng CY, Yet SF, Lin P. Ambient particulate matter induces vascular smooth muscle cell phenotypic changes via NOX1/ROS/NF-κB dependent and independent pathways: protective effects of polyphenols. Antioxidants. 2021;10(5):782. https://doi.org/10.3390/antiox10050782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, Malone JI, Wall BM. Management of hyperglycemic crises in patients with diabetes. Diabetes Care. 2001;24(1):131–53. https://doi.org/10.2337/diacare.24.1.131.

    Article  CAS  PubMed  Google Scholar 

  146. Hyson D, Rutledge JC, Berglund L. Postprandial lipemia and cardiovascular disease. Curr Atheroscler Rep. 2003;5(6):437–44. https://doi.org/10.1007/s11883-003-0033-y.

    Article  PubMed  Google Scholar 

  147. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;1(267):49–60. https://doi.org/10.1016/j.atherosclerosis.2017.10.025.

    Article  CAS  Google Scholar 

  148. Annuzzi G, Bozzetto L, Costabile G, Giacco R, Mangione A, Anniballi G, Vitale M, Vetrani C, Cipriano P, Corte GD, Pasanisi F. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. The American journal of clinical nutrition. 2014;99(3):463–71.

  149. Della Pepa G, Vetrani C, Vitale M, Bozzetto L, Costabile G, Cipriano P, Mangione A, Patti L, Riccardi G, Rivellese AA, Annuzzi G. Effects of a diet naturally rich in polyphenols on lipid composition of postprandial lipoproteins in high cardiometabolic risk individuals: an ancillary analysis of a randomized controlled trial. Eur J Clin Nutr. 2020;74(1):183–92. https://doi.org/10.1038/s41430-019-0459-0.

    Article  CAS  PubMed  Google Scholar 

  150. Prajapati R, Patel P, & Upadhyay U. A review on coronary artery disease. World Journal of Pharmaceutical Research. 2021;10(13):775–790. https://doi.org/10.20959/wjpr202113-22133.

  151. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 2007;39(2):86–93. http://Inaactamedica.org/17933075.

  152. Grossini E, Marotta P, Farruggio S, Sigaudo L, Qoqaiche F, Raina G, De Giuli V, Mary D, Vacca G, Pollastro F. Effects of artemetin on nitric oxide release and protection against peroxidative injuries in porcine coronary artery endothelial cells. Phytother Res. 2015;29(9):1339–48. https://doi.org/10.1002/ptr.5386.

    Article  CAS  PubMed  Google Scholar 

  153. Vaiyapuri S, Roweth H, Ali MS, Unsworth AJ, Stainer AR, Flora GD, Crescente M, Jones CI, Moraes LA, Gibbins JM. Pharmacological actions of nobiletin in the modulation of platelet function. Br J Pharmacol. 2015;172(16):4133–45. https://doi.org/10.1111/bph.13191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Youdim KA, Martin A, Joseph JA. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biol Med. 2000;29(1):51–60. https://doi.org/10.1016/S0891-5849(00)00329-4.

    Article  CAS  Google Scholar 

  155. López-Sepúlveda R, Gómez-Guzmán M, Zarzuelo MJ, Romero M, Sánchez M, Quintela AM, Galindo P, O’Valle F, Tamargo J, Pérez-Vizcaíno F, Duarte J. Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase. Clin Sci. 2011;120(8):321–33. https://doi.org/10.1042/CS20100311.

    Article  CAS  Google Scholar 

  156. Matsumoto H, Ichiyanagi T, Iida H, Ito K, Tsuda T, Hirayama M, Konishi T. Ingested delphinidin-3-rutinoside is primarily excreted to urine as the intact form and to bile as the methylated form in rats. J Agric Food Chem. 2006;54(2):578–82. https://doi.org/10.1021/jf052411a.

    Article  CAS  PubMed  Google Scholar 

  157. Hidalgo M, Martin-Santamaria S, Recio I, Sanchez-Moreno C, de Pascual-Teresa B, Rimbach G, de Pascual-Teresa S. Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr. 2012;7:295–306. https://doi.org/10.1007/s12263-011-0263-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang Y, Shi Z, Reheman A, ** JW, Li C, Wang Y, Andrews MC, Chen P, Zhu G, Ling W, Ni H. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: novel protective roles against cardiovascular diseases. PLoS ONE. 2012;7(5):e37323. https://doi.org/10.1371/journal.pone.0037323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ku SK, Yoon EK, Lee W, Kwon S, Lee T, Bae JS. Antithrombotic and antiplatelet activities of pelargonidin in vivo and in vitro. Arch Pharm Res. 2016;39:398–408. https://doi.org/10.1007/s12272-016-0708-x.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang T, Liang XY, Shi LY, Wang L, Chen JL, Kang C, et al. Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(−) equol-induced activation of Nrf2/ARE in endothelial cells. PLoS ONE. 2013;8:1–10. https://doi.org/10.1371/journal.pone.007907.

    Article  CAS  Google Scholar 

  161. Jia Z, Nallasamy P, Liu D, Shah H, Li JZ, Chitrakar R, Si H, McCormick J, Zhu H, Zhen W, Li Y. Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/NF-κB signaling pathway. J Nutr Biochem. 2015;26(3):293–302. https://doi.org/10.1016/j.jnutbio.2014.11.008.

    Article  CAS  PubMed  Google Scholar 

  162. Oh WJ, Endale M, Park SC, Cho JY, Rhee MH. Dual roles of quercetin in platelets: phosphoinositide-3-kinase and MAP kinases inhibition, and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation. Evid Based Complement Alternat Med. 2012;1(2012):1–10. https://doi.org/10.1155/2012/485262.

    Article  Google Scholar 

  163. Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem. 2012;60(36):8809–22. https://doi.org/10.1021/jf300669s.

    Article  CAS  PubMed  Google Scholar 

  164. Chang SS, Lee VS, Tseng YL, Chang KC, Chen KB, Chen YL, Li CY. Gallic acid attenuates platelet activation and platelet-leukocyte aggregation: Involving pathways of Akt and GSK3β. Evid Based Complement Alternat Med. 2012;1(2012):1–8. https://doi.org/10.1155/2012/683872.

    Article  Google Scholar 

  165. Liu C, Wang W, Lin W, Ling W, Wang D. Established atherosclerosis might be a prerequisite for chicory and its constituent protocatechuic acid to promote endothelium-dependent vasodilation in mice. Mol Nutr Food Res. 2016;60(10):2141–50. https://doi.org/10.1002/mnfr.201600002.

    Article  CAS  PubMed  Google Scholar 

  166. Santhakumar AB, Stanley R, Singh I. The ex vivo antiplatelet activation potential of fruit phenolic metabolite hippuric acid. Food Funct. 2015;6(8):2679–83. https://doi.org/10.1039/C5FO00715A.

    Article  CAS  PubMed  Google Scholar 

  167. Yamagata K. Do coffee polyphenols have a preventive action on metabolic syndrome associated endothelial dysfunctions? An assessment of the current evidence. Antioxidants. 2018;7(2):26. https://doi.org/10.3390/antiox7020026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ali SS, Ahmad WA, Budin SB, Zainalabidin S. Implication of dietary phenolic acids on inflammation in cardiovascular disease. Rev Cardiovasc Med. 2020;21(2):225–40. https://doi.org/10.31083/j.rcm.2020.02.49.

    Article  PubMed  Google Scholar 

  169. Fukuda T, Kuroda T, Kono M, Hyoguchi M, Tanaka M, Matsui T. Augmentation of ferulic acid-induced vasorelaxation with aging and its structure importance in thoracic aorta of spontaneously hypertensive rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2015;388:1113–7. https://doi.org/10.1007/s00210-015-1171-9.

    Article  CAS  Google Scholar 

  170. Liu Q, Tian J, Xu Y, Li C, Meng X, Fu F. Protective effect of RA on myocardial infarction-induced cardiac fibrosis via AT1R/p38 MAPK pathway signaling and modulation of the ACE2/ACE ratio. J Agric Food Chem. 2016;64(35):6716–22. https://doi.org/10.1021/acs.jafc.6b0300.

    Article  CAS  PubMed  Google Scholar 

  171. Li Y, Zhang L, Wang X, Wu W, Qin R. Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma. Drug Dev Res. 2019;80(2):253–61. https://doi.org/10.1002/ddr.21487.

    Article  CAS  PubMed  Google Scholar 

  172. Mele L, Mena P, Piemontese A, Marino V, López-Gutiérrez N, Bernini F, Brighenti F, Zanotti I, Del Rio D. Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch Biochem Biophys. 2016;1(599):42–50. https://doi.org/10.1016/j.abb.2016.02.01.

    Article  Google Scholar 

  173. Frombaum M, Le Clanche S, Bonnefont-Rousselot D, Borderie D. Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie. 2012;94(2):269–76. https://doi.org/10.1016/j.biochi.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  174. Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases. Front Cardiovasc Med. 2021;8:658400. https://doi.org/10.3389/fcvm.2021.658400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wolfe KL, Liu RH. Structure− activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem. 2008;56(18):8404–11. https://doi.org/10.1021/jf8013074.

    Article  CAS  PubMed  Google Scholar 

  176. Leicach SR, Chludil HD. Plant secondary metabolites: Structure–activity relationships in human health prevention and treatment of common diseases. Stud Nat Prod Chem. 2014;1(42):267–304. https://doi.org/10.1016/B978-0-444-63281-4.00009-4.

    Article  CAS  Google Scholar 

  177. Shamsudin NF, Ahmed QU, Mahmood S, Shah SA, Sarian MN, Khattak MM, Khatib A, Sabere AS, Yusoff YM, Latip J. Flavonoids as antidiabetic and anti- inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int J Mol Sci. 2022;23(20):12605. https://doi.org/10.3390/ijms232012605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang D, Du M, Wei Y, Wang C, Shen L. A review on the structure–activity relationship of dietary flavonoids for protecting vascular endothelial function: current understanding and future issues. J Food Biochem. 2018;42(5):e12557. https://doi.org/10.1111/jfbc.12557.

    Article  CAS  Google Scholar 

  179. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, WenHua L. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother. 2018;1(97):67–74. https://doi.org/10.1016/j.biopha.2017.10.064.

    Article  CAS  Google Scholar 

  180. Kang J, Liu Y, **e MX, Li S, Jiang M, Wang YD. Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochimica et biophysica acta (BBA)-General Subjects. 2004;1674(2):205–14. https://doi.org/10.1016/j.bbagen.2004.06.021.

    Article  CAS  PubMed  Google Scholar 

  181. Hemmerle H, Burger HJ, Below P, Schubert G, Rippel R, Schindler PW, Paulus E, Herling AW. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase. J Med Chem. 1997;40(2):137–45. https://doi.org/10.1021/jm9607360.

    Article  CAS  PubMed  Google Scholar 

  182. Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Altern Med: eCAM. 2013;2013:1–11. https://doi.org/10.1155/2013/801457.

    Article  Google Scholar 

  183. Ahmadi Z, Mohammadinejad R, Ashrafizadeh M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J Drug Deliv Sci Technol. 2019;51:591–604. https://doi.org/10.1016/j.jddst.2019.03.017.

    Article  CAS  Google Scholar 

  184. Szekeres T, Fritzer-Szekeres M, Saiko P, Jäger W. Resveratrol and resveratrol analog—structure—activity relationship. Pharm Res. 2010;27:1042–8. https://doi.org/10.1007/s11095-010-0090-1.

    Article  CAS  PubMed  Google Scholar 

  185. Caruso F, Tanski J, Villegas-Estrada A, Rossi M. Structural basis for antioxidant activity of trans-resveratrol: ab initio calculations and crystal and molecular structure. J Agric Food Chem. 2004;52(24):7279–85. https://doi.org/10.1021/jf048794e.

    Article  CAS  PubMed  Google Scholar 

  186. Gülçin İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov Food Sci Emerg Technol. 2010;11(1):210–8. https://doi.org/10.1016/j.ifset.2009.07.002.

    Article  CAS  Google Scholar 

  187. Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K, Zotti MJ, Raes K, Smagghe G. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. J Agric Food Chem. 2013;61(48):11832–9. https://doi.org/10.1021/jf404641v.

    Article  CAS  PubMed  Google Scholar 

  188. Goh YX, Jalil J, Lam KW, Husain K, Premakumar CM. Genistein: a review on its anti-inflammatory properties. Front Pharmacol. 2022;24(13):820969. https://doi.org/10.3389/fphar.2022.820969.

    Article  CAS  Google Scholar 

  189. Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Calina D. Genistein: an integrative overview of its mode of action, pharmacological roperties, and health benefits. Oxid Med Cell Longev. 2021;2021. https://doi.org/10.1155/2021/3268136.

  190. Deodato B, Altavilla D, Squadrito G, Campo GM, Arlotta M, Minutoli L, Saitta A, Cucinotta D, Calapai G, Caputi AP, Miano M. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br J Pharmacol. 1999;128(8):1683–90. https://doi.org/10.1038/sj.bjp.0702973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnol Rep. 2014;1(4):86–93. https://doi.org/10.1016/j.btre.2014.09.002.

    Article  Google Scholar 

  192. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332–6. https://doi.org/10.1159/000491755.

    Article  CAS  PubMed  Google Scholar 

  193. Su M, Zhao W, Xu S, Weng J. Resveratrol in treating diabetes and its cardiovascular complications: a review of its mechanisms of action. Antioxidants. 2022;11(6):1085. https://doi.org/10.3390/antiox11061085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Critical Reviews in Food Science and Nutrition. 2022:1–24. https://doi.org/10.1080/10408398.2022.2067825.

  195. Sanches-Silva A, Testai L, Nabavi SF, Battino M, Devi KP, Tejada S, Farzaei MH. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res. 2020;152:104626. https://doi.org/10.1016/j.phrs.2019.104626.

    Article  CAS  PubMed  Google Scholar 

  196. Atefi M, Mirzamohammadi S, Darand M, Tarrahi MJ. Meta- analysis of the effects of quinoa (Chenopodium quinoa) interventions on blood lipids. J Herb Med. 2022;34:100571. https://doi.org/10.1016/j.hermed.2022.100571.

    Article  Google Scholar 

  197. Atefi M, Entezari MH, Vahedi H, Hassanzadeh A. Sesame oil ameliorates alanine aminotransferase, aspartate aminotransferase, and fatty liver grade in women with nonalcoholic fatty liver disease undergoing low-calorie diet: A randomized double-blind controlled trial. Int J Clin Pract. 2022;2022. https://doi.org/10.1155/2022/4982080.

  198. Atefi M, Entezari MH, Vahedi H, Hassanzadeh A. The effects of sesame oil on metabolic biomarkers: a systematic review and meta-analysis of clinical trials. J Diabetes Metab Disord. 2022;21(1):1065–80. https://doi.org/10.1007/s40200-022-00997-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of polyphenols and carotenoids in endothelial dysfunction: An overview from classic to innovative biomarkers. Oxid Med Cell Longev. 2020;2020:1–19. https://doi.org/10.1155/2020/6381380.

    Article  CAS  Google Scholar 

  200. Taguchi K, Tano I, Kaneko N, Matsumoto T, Kobayashi T. Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomed Pharmacother. 2020;129:110463. https://doi.org/10.1016/j.biopha.2020.110463.

    Article  CAS  PubMed  Google Scholar 

  201. Atefi M, Ghavami A, Hadi A, Askari G. The effect of barberry (Berberis vulgaris L.) supplementation on blood pressure: A systematic review and meta-analysis of the randomized controlled trials. Complement Ther Med. 2021;56:102608. https://doi.org/10.1016/j.ctim.2020.102608.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AB, SA and BS designed the concept of the manuscript. NK wrote the sections on sources, bioavailability, metabolism and antihyperglycemic potential of polyphenols. GB wrote the sections on oxidative stress, inflammation in diabetes and cardiovascular protective effects of polyphenols. SS wrote the sections on antioxidative properties of polyphenols and designed the figures. SSB revised and completed the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Astha Bhatia.

Ethics declarations

Ethical approval

Not applicable.

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, N., Bhagat, G., Singh, S. et al. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 23, 73–99 (2024). https://doi.org/10.1007/s40200-023-01326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-023-01326-x

Keywords

Navigation