Log in

Vitamin D3 attenuates oxidative stress and regulates glucose level and leukocyte count in a semi-chronic streptozotocin-induced diabetes model

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Vitamin D3 (vit-D3) is a potent immunomodulator with anti-inflammatory and antioxidative properties. We used streptozotocin (STZ)-induced rat model of diabetes (DM) to evaluate the effects of vit-D3. We measured serum biochemical parameters, interleukin-17 (IL-17), osteocalcin (OC), malondialdehyde (MDA), and immune cell count on the 21st day of experiment.

Method

A total of 24 Wistar rats were randomly divided into three groups. Each group had eight rats. During the 1st day of the experiment, the control group was injected intraperitoneally with citrate buffer, while STZ group and STZ + vit-D3 group were injected by a single i.p. dose (35 mg/kg) of STZ dissolved in citrate buffer (pH 4,5; 0,1 M). Vitamin D3 was applied via oral gavage once daily to the STZ + vit-D3 group for a total period of 14 days, starting from the 7th day of the experiment.

Results

STZ rats showed a significant reduction in OC and an increase in MDA and IL-17 serum concentrations compared to the control rats. We also observed a significant STZ-associated decrease in the number of lymphocytes and a significant increase in monocyte and eosinophil number. Oral treatment with vit-D3 to STZ-induced diabetic rats significantly increased OC and decreased MDA serum levels. Furthermore, vit-D3 treatment resulted in a good regulation of hematopoiesis such as increase in the number of segmented granulocytes and lymphocytes and a reduction in the number of monocytes and eosinophils.

Conclusion

Vit-D3 treatment has important therapeutic effects; among many others it can attenuate oxidative stress and ameliorate the hyperglycemic state in the STZ-induced rat diabetic model, which is promising for further clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Graph 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Abdollahi M, Hosseini A. Streptozotocin. In: Phili W, editor. Encyclopedia of toxicology. 3rd ed. London: Academic; 2014. p. 402–4.

    Chapter  Google Scholar 

  2. Schein PS, Cooney DA, Vernon ML. The use of nicotinamide to modify the toxicity of streptozotocin diabetes without loss of antitumor activity. Cancer Res. 1967;27:2324–32.

    CAS  PubMed  Google Scholar 

  3. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51:216–26. https://doi.org/10.1007/s00125-007-0886-7.

    Article  CAS  PubMed  Google Scholar 

  4. Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000;43:1528–33. https://doi.org/10.1007/s001250051564.

    Article  CAS  PubMed  Google Scholar 

  5. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.

    CAS  PubMed  Google Scholar 

  6. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans. Circulation. 2002;106:2067–72. https://doi.org/10.1161/01.CIR.0000034509.14906.AE.

    Article  CAS  PubMed  Google Scholar 

  7. Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin-6, tumor necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000;67:291–300. https://doi.org/10.1016/s0024-3205(00)00622-6.

    Article  CAS  PubMed  Google Scholar 

  8. Fernánde-Real JM, Broch M, Vendrell J, Gutiérrez C, Casamitjana R, Pugeat M, Richart C, Ricart W. Interleukin-6 gene poly-morphism and insulin sensitivity. Diabetes. 2000;49:517–20. https://doi.org/10.2337/diabetes.49.3.517.

    Article  Google Scholar 

  9. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adiposetissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200. https://doi.org/10.1210/jcem.82.12.4450.

    Article  CAS  PubMed  Google Scholar 

  10. Manohar SM, Vaikasuvu SR, Deepthi K, Sachan A, Narasimha SR. An association of hyperglycemia with plasma malondialdehyde and atherogenic lipid risk factors in newly diagnosed Type 2 diabetic patients. J Res Med Sci. 2013;18:89–93.

    PubMed  PubMed Central  Google Scholar 

  11. Foroughi M, Maghsoudi Z, Askari G. The effect of vitamin D supplementation on blood sugar and different indices of insulin resistance in patients with non-alcoholic fatty liver disease (NAFLD). Iran J Nurs Midwifery Res. 2016;21:100–4. https://doi.org/10.4103/1735-9066.174759.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alvarez JA, Ashraf A. Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol. 2010;2010:351–85. https://doi.org/10.1155/2010/351385.

    Article  CAS  Google Scholar 

  13. Martin T, Campbell RK. Vitamin D and diabetes. Diabetes Spectr. 2011;24:113–8. https://doi.org/10.2337/diaspect.24.2.113.

    Article  Google Scholar 

  14. Kim MR, Jeong SJ. Relationship between Vitamin D level and lipid profile in non-obese children. Metabolites. 2019;9:125. https://doi.org/10.3390/metabo9070125.

    Article  CAS  PubMed Central  Google Scholar 

  15. Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi S, Farhangi A, Verdi AA, Mofidian SM, Rad BL. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007;2:60–4. https://doi.org/10.1007/BF02913315.

    Article  Google Scholar 

  16. Lee JH, Yang SH, Oh JM, Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol. 2010;62:1–23. https://doi.org/10.1211/jpp.62.01.0001.

    Article  CAS  PubMed  Google Scholar 

  17. Cruz B, Flores RJ, Uribe KP, Espinoza EJ, Spencer CT, Serafine KM, Nazarian A, O’Dell LE. Insulin modulates the strong reinforcing effects of nicotine and changes in insulin biomarkers in a rodent model of diabetes. Neuropsychopharmacol. 2019;44:1141–51. https://doi.org/10.1038/s41386-018-0306-3.

    Article  CAS  Google Scholar 

  18. Von Hurst PR, Sonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient: a randomized, placebo-controlled trial. Br J Nutr. 2010;103:549–55. https://doi.org/10.1017/S0007114509992017.

    Article  CAS  Google Scholar 

  19. Bourlon PM, Billaudel B, Faure-Dussert A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J Endocrinol. 1999;160:87–95. https://doi.org/10.1677/joe.0.1600087.

    Article  CAS  PubMed  Google Scholar 

  20. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92:2017–29. https://doi.org/10.1210/jc.2007-0298.

    Article  CAS  PubMed  Google Scholar 

  21. Parker J, Hashmi O, Dutton D, Mavrodaris A, Stranges S, Kandala NB, Clarke A, Franco OH. Levels of vitamin D and cardiometabolic disorders: systematic review and meta-analysis. Maturitas. 2010;65:225–36. https://doi.org/10.1016/j.maturitas.2009.12.013.

    Article  CAS  PubMed  Google Scholar 

  22. Schwallenberg G. Vitamin D and diabetes: improvement of glycemic control with vitamin D3 repletion. Can Fam Phys. 2008;54:864–6.

    Google Scholar 

  23. Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr. 2004;79:820–5. https://doi.org/10.1093/ajcn/79.5.820.

    Article  CAS  PubMed  Google Scholar 

  24. Riachy R, Vandewalle B, Moerman E, Belaich S, Lukowiak B, Gmyr V, Muharram G, Conte JK, Pattou F. 1,25-Dihydroxyvitamin D3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis. 2006;11:151–9. https://doi.org/10.1007/s10495-006-3558-z.

    Article  CAS  PubMed  Google Scholar 

  25. Hu Z, Chen J, Sun X, Wang L, Wang A. Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: A meta-analysis of interventional studies. Medicine. 2019;98(14):e14970. https://doi.org/10.1097/MD.0000000000014970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El Khoury G, Mansour H, Kabbara W, Chamoun N, Attalah N, Salameh P. Hyperglycemia in hospitalized diabetic non-critically ill patients: Prevalence, correlates, management and nurses’ attitudes. Curr Diabetes Rev. 2018;15(2):133–40. https://doi.org/10.2174/1573399814666180119142254.

    Article  Google Scholar 

  27. Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death. Diabetes. 2011;60:2112–29. https://doi.org/10.2337/db10-1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fatima N, Faisal SM, Zubair S, Ajmal M, Siddiqui SS, Moin S, Owais M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: Correlation with age and glycemic condition in diabetic human subjects. PLoS ONE. 2016;11(8):e0161548. https://doi.org/10.1371/journal.pone.0161548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohammed FM, Pambuk CIA, Al-Kadh NA. Evaluation of interleukin 17 A level and lipid profile in diabetic female patients treated by Metformin and Glimepiride in Kirkuk City Iraq. Biomed Pharmacol J. 2019;12(4):1849–55. https://doi.org/10.13005/bpj/1815.

    Article  CAS  Google Scholar 

  30. Zúñiga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C, Andrade SM, Cua DJ, Kraemer FB, Butcher EC. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;11:6947–59. https://doi.org/10.4049/jimmunol.1001269.

    Article  CAS  Google Scholar 

  31. **a Y, Chen H, **ao H, Yang J, Li Z, Wang Y, Yang T, Wang B. Immune regulation mechanism of vitamin D level and IL-17/IL-17R pathway in Crohn’s disease. Exp Therapy Med. 2019;5:3423–8. https://doi.org/10.3892/etm.2019.7389.

    Article  CAS  Google Scholar 

  32. Seckin D, Ilhan N, Ilhan N, Ertugrul S. Glycaemic control, markers of endothelial cell activation and oxidative stress in children with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2006;73:191–7. https://doi.org/10.1016/j.diabres.2006.01.001.

    Article  CAS  PubMed  Google Scholar 

  33. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57:715–24. https://doi.org/10.1093/ajcn/57.5.715S.

    Article  Google Scholar 

  34. Firoozrai M, Nourbakhsh M, Razzaghy-Azar M. Erythrocyte susceptibility to oxidative stress and antioxidant status in patients with type 1 diabetes. Diabetes Res Clin Pract. 2007;77:427–32. https://doi.org/10.1016/j.diabres.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  35. Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res. 1990;238:223–33. https://doi.org/10.1016/0165-1110(90)90014-3.

    Article  CAS  PubMed  Google Scholar 

  36. Alatawi FS, Faridi UA, Alatawi MS. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats. Saudi Pharma J. 2018;8:1208–13. https://doi.org/10.1016/j.jsps.2018.07.012.

    Article  Google Scholar 

  37. Hwang YC, Jeong IK, Ahm KJ, Chung HY. Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporosis Int. 2012;23:1337–42. https://doi.org/10.1007/s00198-011-1679-x.

    Article  CAS  Google Scholar 

  38. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69. https://doi.org/10.1016/j.cell.2007.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Janghorbani M, Feskanich D, Willett WC, Hu F. Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care. 2006;29:1573–8. https://doi.org/10.2337/dc06-0440.

    Article  PubMed  Google Scholar 

  40. Fadini GP, de Kreutzenberg SV, Boscaro E, Albiero M, Cappellari R, Krankel N, Landmesser U, Toniolo A, Bolego C, Cignarella A, Seeger F, Dimmeler S, Zeiher A, Agostini C, Avogaro A. An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia. 2013;8:1856–66. https://doi.org/10.1007/s00125-013-2918-9.

    Article  CAS  Google Scholar 

  41. Venneri MA, Giannetta E, Panio G, De Gaetano R, Gianfrilli D, Pofi R, Masciarelli S, Fazi F, Pellegrini M, Lenzi A, Naro F, Isidori AM. Chronic inhibition of PDE5 limits pro-inflammatory monocyte-macrophage polarization in streptozotocin-induced diabetic mice. PLoS One. 2015;10(5):e0126580. https://doi.org/10.1371/journal.pone.0126580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Min D, Brooks B, Wong J, Salomon R, Bao W, Harrisberg B, Twigg SM, Yue DK, McLennan SV. Alterations in monocyte CD16 in as-sociation with diabetes complications. Mediat Inflamm. 2021;2012:649083. https://doi.org/10.1155/2012/649083.

    Article  CAS  Google Scholar 

  43. Muller YD, Golshayan D, Ehirchiou D, Wyss JC, Giovannoni L, Meier R, Serre-Beinier V, Puga Yung G, Morel P, Bühler LH, Seebach JD. Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes. 2011;60:2331–40. https://doi.org/10.2337/db11-0159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagaraju S, Bertera S, Funair A, Wijkstrom M, Trucco M, Cooper DKC, Bottino R. Streptozotocin-associated lymphopenia in cynomolgus monkeys. Islets. 2014;6(3):e944441. https://doi.org/10.4161/19382014.2014.944441.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stohr R, Federici M. Insulin resistance and atherosclerosis: convergence between metabolic pathways and inflammatory nodes. Biochem J. 2013;1:1–11. https://doi.org/10.1042/bj20130121.

    Article  Google Scholar 

  46. Pifarre P, Gutierrez-Mecinas M, Prado J, Usero L, Roura-Mir C, Giralt M, Hidalgo J, Garcia A. Phosphodiesterase 5 in-hibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions. Experiment Neurol. 2014;251:58–71. https://doi.org/10.1016/j.expneurol.2013.10.021.

    Article  CAS  Google Scholar 

  47. Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, Mazzieri R, Doglioni C, Naldini L. Identification of proangiogenicTIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007;12:276–85. https://doi.org/10.1182/blood-2006-10-053504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors want to acknowledge Dr. Andi Alijagic for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MMB, MF, AV: Methodology, validation, formal analysis; DS, AD, AZ: Conceptualization, data curation, writing original draft, writing review and editing. AMDŽ: writing original draft. The experiments were per-formed in-house, and no paper mill was used.

Corresponding author

Correspondence to Damir Suljević.

Ethics declarations

Ethics approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrašinović-Brulić, M., Dervišević, A., Začiragić, A. et al. Vitamin D3 attenuates oxidative stress and regulates glucose level and leukocyte count in a semi-chronic streptozotocin-induced diabetes model. J Diabetes Metab Disord 20, 771–779 (2021). https://doi.org/10.1007/s40200-021-00814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00814-2

Keywords

Navigation