Log in

Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Introduction

Super-paramagnetic iron oxide nanoparticles (SPIONs) are known as promising theranostic nano-drug carriers with magnetic resonance imaging (MRI) properties. Applying the herbaceous components with cytotoxic effects as cargos can suggest a new approach in the field of cancer-therapy. In this study mesoporous silica coated SPIONs (mSiO2@SPIONs) containing curcumin (CUR) and silymarin (SIL) were prepared and evaluated on breast cancer cell line, MCF-7.

Methods

Nanoparticles (NPs) were formulated by reverse microemulsion method and characterized by DLS, SEM and VSM. The in vitro drug release, cellular cytotoxicity, and MRI properties of NPs were determined as well. The cellular uptake of NPs by MCF-7 cells was investigated through LysoTracker Red staining using confocal microscopy.

Results

The MTT results showed that the IC50 of CUR + SIL loaded mSiO2@SPIONs was reduced about 50% in comparison with that of the free drug mixture. The NPs indicated proper MRI features and cellular uptake through endocytosis.

Conclusion

In conclusion the prepared formulation may offer a novel theranostic system for breast cancer researches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khafaji M, Vossoughi M, Hormozi-Nezhad MR, Dinarvand R, Börrnert F, Irajizad A. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging. Sci Rep. 2016;6:27847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, Lolli MG, Grimaldi S, Rinaldi M, Lisi A. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep. 2017;7:46513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li X, Wang L, Fan Y, Feng Q, Cui F-z. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:6.

    Google Scholar 

  4. Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 2007;28(9):1629–42.

    Article  PubMed  Google Scholar 

  5. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B. 2016;143:224–32.

    Article  CAS  Google Scholar 

  6. Cao X, Deng W-W, Fu M, Wang L, Tong S-S, Wei Y-W, Xu Y, Su W-Y, Xu X-M, Yu J-N. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomedicine. 2012;7:753–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1):24–46.

    Article  CAS  PubMed  Google Scholar 

  8. Chin SF, Iyer KS, Saunders M, St Pierre TG, Buckley C, Paskevicius M, Raston CL. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chem Eur J. 2009;15(23):5661–5.

    Article  CAS  PubMed  Google Scholar 

  9. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141–53.

  10. Shishodia S. Molecular mechanisms of curcumin action: gene expression. BioFactors. 2013;39(1):37–55.

    Article  CAS  PubMed  Google Scholar 

  11. Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 2014;4(21):10815–29.

    Article  CAS  Google Scholar 

  12. Lin CH, Lee WL, Shyur LF. An overview of the current development of phytoremedies for breast cancer. In: Cho W, editor. Materia medica for various cancers. Evidence-based anticancer complementary and alternative medicine, vol 2. Dordrecht: Springer; 2012. https://doi.org/10.1007/978-94-007-1983-5_3.

  13. Shehzad A, Lee J, Lee YS. Curcumin in various cancers. BioFactors. 2013;39(1):56–68.

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal BB, Surh Y-J, Shishodia S, editors. The molecular targets and therapeutic uses of curcumin in health and disease, vol 495. Springer Science & Business Media; 2007. p. 197–212.

  15. Kadoglou NP, Panayiotou C, Vardas M, Balaskas N, Kostomitsopoulos NG, Tsaroucha AK, Valsami G. A comprehensive review of the cardiovascular protective properties of Silibinin/Silymarin: A new kid on the block. Pharmaceuticals. 2022;15(5):538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rastegar H, Ashtiani HA, Anjarani S, Bokaee S, Khaki A, Javadi L. The role of milk thistle extract in breast carcinoma cell line (MCF-7) apoptosis with doxorubicin. Acta Med Iran. 2013;51(9):591.

    PubMed  Google Scholar 

  17. Bayram D, Çetin E, Kara M, Özgöçmen M, Candan I. The apoptotic effects of silibinin on MDA-MB-231 and MCF-7 human breast carcinoma cells. Hum Exp Toxicol. 2017;36(6):573–86.

    Article  CAS  PubMed  Google Scholar 

  18. Chung SY, Sung MK, Kim NH, Jang JO, Go EJ, Lee HJ. Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch Pharmacal Res. 2005;28(7):823–8.

    Article  CAS  Google Scholar 

  19. Provinciali M, Papalini F, Orlando F, Pierpaoli S, Donnini A, Morazzoni P, Riva A, Smorlesi A. Effect of the silybin-phosphatidylcholine complex (IdB 1016) on the development of mammary tumors in HER-2/neu transgenic mice. Can Res. 2007;67(5):2022–9.

    Article  CAS  Google Scholar 

  20. Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;128:240–55.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang K, Wang W, ** X, Wang Z, Ji Z, Meng G. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep. 2015;33(6):2711–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aubery C, Solans C, Prevost S, Gradzielski M, Sanchez-Dominguez M. Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir. 2013;29(6):1779–89.

    Article  CAS  PubMed  Google Scholar 

  23. Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, Kuttuva GR. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir. 2012;28(22):8479–85.

    Article  CAS  PubMed  Google Scholar 

  24. Linssen T, Cassiers K, Cool P, Vansant E. Mesoporous templated silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. Adv Coll Interface Sci. 2003;103(2):121–47.

    Article  CAS  Google Scholar 

  25. Suteewong T, Sai H, Cohen R, Wang S, Bradbury M, Baird B, Gruner SM, Wiesner U. Highly aminated mesoporous silica nanoparticles with cubic pore structure. J Am Chem Soc. 2010;133(2):172–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qiao Z-A, Zhang L, Guo M, Liu Y, Huo Q. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater. 2009;21(16):3823–9.

    Article  CAS  Google Scholar 

  27. Suteewong T, Sai H, Lee J, Bradbury M, Hyeon T, Gruner SM, Wiesner U. Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. J Mater Chem. 2010;20(36):7807–14.

    Article  CAS  Google Scholar 

  28. Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J Mater Chem. 2010;20(28):5835–42.

    Article  CAS  Google Scholar 

  29. Kwon S, Singh RK, Perez RA, Neel EAA, Kim H-W, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:2041731413503357.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liong M, Lu J, Kovochich M, **a T, Ruehm SG, Nel AE, Tamanoi F, Zink JI. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liong M, France B, Bradley KA, Zink JI. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater. 2009;21(17):1684–9.

    Article  CAS  Google Scholar 

  32. Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2(4):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jabr-Milane LS. Tumor hypoxia, the Warburg effect, and multidrug resistance: Modulation of hypoxia induced MDR using EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine therapy. PhD diss., Northeastern University, 2010.

  34. Pan K, Luo Y, Gan Y, Baek SJ, Zhong Q. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter. 2014;10(35):6820–30.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y-J, Pan M-H, Cheng A-L, Lin L-I, Ho Y-S, Hsieh C-Y, Lin J-K. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76.

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Zou L-Q, Niu J, Liu W, Peng S-F, Liu C-M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules. 2015;20(8):14293–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH, Amini M, Ostad SN, Atyabi F, Dinarvand R. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. Int J Pharm. 2015;494(1):430–44.

    Article  CAS  PubMed  Google Scholar 

  38. Cabana L, Bourgognon M, Wang JTW, Protti A, Klippstein R, de Rosales R, Shah AM, Fontcuberta J, Tobías-Rossell E, Sosabowski JK. The shortening of MWNT-SPION hybrids by steam treatment improves their magnetic resonance imaging properties in vitro and in vivo. Small. 2016;12(21):2893–905.

    Article  CAS  PubMed  Google Scholar 

  39. Rahman S, Telny T, Ravi T, Kuppusamy S. Role of surfactant and pH in dissolution of curcumin. Indian J Pharm Sci. 2009;71(2):139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bafkary R, Khoee S. Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery. RSC Adv. 2016;6(86):82553–65.

    Article  CAS  Google Scholar 

  41. Thomas R, Park I-K, Jeong YY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci. 2013;14(8):15910–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Panahifar A, Mahmoudi M, Doschak MR. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity. ACS Appl Mater Interfaces. 2013;5(11):5219–26.

    Article  CAS  PubMed  Google Scholar 

  43. Matson D, Linehan J, Bean R. Ultrafine iron oxide powders generated using a flow-through hydrothermal process. Mater Lett. 1992;14(4):222–6.

    Article  CAS  Google Scholar 

  44. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012;112(4):2323–38.

    Article  CAS  PubMed  Google Scholar 

  45. Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol. 2011;253(2):81–93.

    Article  CAS  PubMed  Google Scholar 

  46. Bayal N, Singh B, Singh R, Polshettiwar V. Size and fiber density controlled synthesis of fibrous Nanosilica Spheres (KCC-1). Sci Rep. 2016;6:24888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Tourbin M, Lachaize S, Guiraud P. Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere. 2013;92(6):681–7.

    Article  CAS  PubMed  Google Scholar 

  48. Montgomery A, Adeyeni T, San K, Heuertz RM, Ezekiel UR. Curcumin sensitizes Silymarin to exert synergistic anticancer activity in colon cancer cells. J Cancer. 2016;7(10):1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Volate SR, Davenport DM, Muga SJ, Wargovich MJ. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis. 2005;26(8):1450–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar M, Singh G, Arora V, Mewar S, Sharma U, Jagannathan N, Sapra S, Dinda AK, Kharbanda S, Singh H. Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomed. 2012;7:3503.

    CAS  Google Scholar 

  51. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. CORRIGENDUM: Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2014;4:5138.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Tehran University of Medical Sciences and Imaging Center of Imam Khomeini Hospital (Tehran, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rassoul Dinarvand.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadegha, S., Varshochian, R., Dadras, P. et al. Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy. DARU J Pharm Sci 30, 331–341 (2022). https://doi.org/10.1007/s40199-022-00453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-022-00453-9

Keywords

Navigation