Log in

Studies on the effect of process parameter on corrosion behaviour of electron beam welded Ti-based alloy (Ti6Al4V)

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The present work concerns understanding the effect of process parameters on the corrosion behavior (in a 3.56 wt.% NaCl Solution) of electron beam welded Ti6Al4V developed with an acceleration voltage of 60 kV, beam current varying from 42–48 mA, and welding speed ranging from 800–1000 mm/min. In addition, beam oscillation (1–2 mm) was employed for the samples processed with an applied voltage of 900 mm/min and beam current of 45 mA. Electron beam welding leads to the formation of defect-free welding with the presence of α, α' martensite, and a few β phases in the microstructure. A detailed electron backscattered diffraction study shows that the area fractions of low/high angle grain boundaries vary with process parameters. The average Kernal misorientation angle of the electron beam welded samples varies from 0.49°-0.57° as compared to 0.40° for as-received Ti6Al4V. Potentiodynamic polarization study in a 3.5 wt.% NaCl solution shows a superior corrosion resistance for the samples welded with beam oscillation as compared to the case without any oscillation. Electrochemical impedance spectroscopy measurement reveals the formation of a complex passivating film on the oxide surface. The X-ray photoelectron spectroscopy (XPS) analysis of the post-corroded samples shows the presence of titanium oxide (rutile and anatase) on the surface in the case of electron beam welded samples as compared to only anatase in as-received Ti6Al4V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data used in the present study are available in the manuscript only. Extra data if required is available on request.

References

  1. Donachie MJ (2000) A Primer on Titanium and Its Alloys. In: Titanium: A technical guide, 2nd edn. ASM International, Cleveland, pp 1–3. https://doi.org/10.31399/asm.tb.ttg2.t61120001

  2. Lütjering G, Williams JC (2007) Titanium, 2nd edn. Springer, Berlin Heidelberg, New York, pp 246–259

  3. Cui C, Hu BM, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32(3):1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  CAS  Google Scholar 

  4. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  5. Shipley H, McDonnell D, Culleton M, Coull R, Lupoi R, O’Donnell G et al (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int J Mach Tools Manuf 128:1–20. https://doi.org/10.1016/j.ijmachtools.2018.01.003

    Article  Google Scholar 

  6. Baeslack WA, Banas CM (1981) Comparative evaluation of laser and gas tungsten arc weldments in high-temperature titanium alloys. Weld J 60(7):121–130

    Google Scholar 

  7. Yung WKC, Ralph B, Lee WB, Fenn R (1997) An investigation into welding parameters affecting the tensile properties of titanium welds. J Mater Process Technol 63(1–3):759–764. https://doi.org/10.1016/S0924-0136(96)02719-7

    Article  Google Scholar 

  8. Choi BH, Choi BK (2008) The effect of welding conditions according to mechanical properties of pure titanium. J Mater Process Technol 201(1–3):526–530. https://doi.org/10.1016/j.jmatprotec.2007.11.164

    Article  CAS  Google Scholar 

  9. Short AB (2009) Gas tungsten arc welding of α + β titanium alloys: a review. Mater Sci Technol 25(3):309–324. https://doi.org/10.1179/174328408X389463

    Article  CAS  Google Scholar 

  10. Mohandas T, Banerjee D, Mahajan YR, Kutumba Rao VV (1996) Studies on fusion zone fracture behaviour of electron beam welds of an α + β-titanium alloy. J Mater Sci 31:3769–75. https://doi.org/10.1007/BF00352792

    Article  CAS  Google Scholar 

  11. Babu NK, Raman SGS (2006) Influence of current pulsing on microstructure and mechanical properties of Ti-6Al-4V TIG weldments. Sci Technol Weld Join 11(4):442–447. https://doi.org/10.1179/174329305X57473

    Article  CAS  Google Scholar 

  12. Leggatt RH (2008) Residual stresses in welded structures. Int J Press Vessel Pip 85(3):144–151. https://doi.org/10.1016/j.ijpvp.2007.10.004

    Article  CAS  Google Scholar 

  13. Moharana BR, Sahu SK, Sahoo SK, Bathe R (2016) Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser. Eng Sci Technol an Int J 19(2):684–690. https://doi.org/10.1016/j.jestch.2015.10.004

    Article  Google Scholar 

  14. Kuryntsev SV, Morushkin AE, Gilmutdinov AK (2017) Fiber laser welding of austenitic steel and commercially pure copper butt joint. Opt Lasers Eng 90:101–109. https://doi.org/10.1016/j.optlaseng.2016.10.008

    Article  Google Scholar 

  15. Kar J, Roy SK, Roy GG (2016) Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel. J Mater Process Technol 233:174–185. https://doi.org/10.1016/j.jmatprotec.2016.03.001

    Article  CAS  Google Scholar 

  16. Sun Z, Ion JC (1995) Review Laser welding of dissimilar metal combinations. J Mater Sci 30:4025–4214. https://doi.org/10.1007/BF00361499

    Article  Google Scholar 

  17. Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Technol 59:257–267. https://doi.org/10.1016/0924-0136(95)02150-7

    Article  Google Scholar 

  18. Guo S, Zhou Q, Kong J, Peng Y, **ang Y, Luo TY et al (2016) Effect of beam offset on the characteristics of copper/304stainless steel electron beam welding. Vacuum 128:205–212. https://doi.org/10.1016/j.vacuum.2016.03.034

    Article  CAS  Google Scholar 

  19. Arivazhagan N, Singh S, Prakash S, Reddy GM (2011) Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding. Mater Des 32(5):3036–3050. https://doi.org/10.1016/j.matdes.2011.01.037

    Article  CAS  Google Scholar 

  20. Wang S, Wu X (2010) Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding. Mater D 36:663–670. https://doi.org/10.1016/j.matdes.2011.11.068

    Article  CAS  Google Scholar 

  21. Lin Prakash PS, Rajak B, Panda SK, Roy GG, Jha MN, Mascarenhas M (2017) Mechanical properties and stretch forming behaviour of electron beam welded titanium sheets of Grade-2 and Grade-5. Mater Today Proc 4(2):908–916. https://doi.org/10.1016/j.matpr.2017.01.102

    Article  Google Scholar 

  22. Yunlian Q, Ju D, Quan H, Liying Z (2000) Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mat Sci and Eng 280:177–181. https://doi.org/10.1016/S0921-5093(99)00662-0

    Article  Google Scholar 

  23. Ke W, Zeng Z, Oliveira JP, Peng B, Shen J, Tan C et al (2023) Heat transfer and melt flow of keyhole, transition and conduction modes in laser beam oscillating welding. Int J Heat Mass Transf 203:123821. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123821

    Article  CAS  Google Scholar 

  24. Biruke F, Peng B, Oliveira JP, Shen J, Ao S, Li H et al (2023) Role of Pd interlayer on NiTi to Ti6Al4V laser welded joints: microstructural evolution and strengthening mechanisms. Mater Des 228:111845. https://doi.org/10.1016/j.matdes.2023.111845

    Article  CAS  Google Scholar 

  25. Shen J, Agrawal P, Rodrigues TA, Lopes JG, Schell N, He J et al (2023) Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe 42 Mn 28 Co 10 Cr 15 Si 5 metastable high entropy alloy. Mater Sci Eng A 867:144722. https://doi.org/10.1016/j.msea.2023.144722

    Article  CAS  Google Scholar 

  26. Wang X, Gong X, Chou K (2015) Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manuf 1:287–295. https://doi.org/10.1016/j.promfg.2015.09.026

    Article  Google Scholar 

  27. Liang J, Sha Z, Shi Y (2016) Ultrasonic inspection of small pores within electron beam welded titanium alloys and their influence on the fatigue properties, 19th World Conference on Non-Destructive Testing, 1–9. https://www.ndt.net/?id=9113

  28. Lu Q, Alberch J, Hashimoto T, Garcia-vergara SJ, Habazaki H, Skeldon P (2008) Porous anodic oxides on titanium and on a Ti – W alloy. Corros Sci 50:548–553. https://doi.org/10.1515/corrrev-2022-0031

    Article  CAS  Google Scholar 

  29. Dai N, Zhang L, Zhang J, Zhang X, Ni Q, Chen Y (2016) Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros Sci 111:703–710. https://doi.org/10.1016/j.corsci.2016.06.009

    Article  CAS  Google Scholar 

  30. Myers JR, Bomberger HB, Froes FH (1984) Corrosion behavior and use of titanium and its alloys. JOM J Miner Met Mater Soc 36(10):50–60. https://doi.org/10.1007/BF03338589

    Article  CAS  Google Scholar 

  31. Dehnavi V, Henderson JD, Dharmendra C, Amirkhiz BS et al (2020) Corrosion behaviour of electron beam melted Ti6Al4V: effects of microstructural variation. J Electrochem Soc 167(13):131505. https://doi.org/10.1149/1945-7111/abb9d

    Article  CAS  Google Scholar 

  32. Kai W, Chang MT, Bai CY (2001) The corrosion of titanium aluminides in H 2 / H 2 S / H 2 O atmospheres at 800–1000 ° C. Oxid Met 56:191–214. https://doi.org/10.1023/A:1010313726584

    Article  CAS  Google Scholar 

  33. Priem F, Frayret JP, Caprani A, Astruc A, Astruc M, Marya SK (1989) Influence of the structural state on the anodic dissolution of TA6V alloy in concentrated hydrochloric acid. J Electroanal Chem 267(1–2):251–270. https://doi.org/10.1016/0022-0728(89)80253-0

    Article  CAS  Google Scholar 

  34. Raja VS, Angal RD, Suresh M (1993) Effect of Widmanstatten structure on protection potential of Ti-6Al-2Sn-4Zr-2Mo (0.1Si) alloy in 1 M NaBr solution. Corrosion 49(1):2–7. https://doi.org/10.5006/1.3316031

    Article  CAS  Google Scholar 

  35. Han Z, Zhao H, Chen XF, Lin HC (2000) Corrosion behavior of Ti-6Al-4V alloy welded by scanning electron beam. Mater Sci Eng A 277(1–2):38–45. https://doi.org/10.1016/S0921-5093(99)00561-4

    Article  Google Scholar 

  36. Zeng CY, Zhang YP, Hu JL, Hou B, Wang HY, Dong CL et al (2020) The role of microstructure on corrosion fatigue behavior of thick-plate Ti–6Al–4V joint via vacuum electron beam welding. Vacuum 182:109714. https://doi.org/10.1016/j.vacuum.2020.109714

    Article  CAS  Google Scholar 

  37. Kar J, Roy SK, Roy GG (2018) Influence of beam oscillation in electron beam welding of Ti-6AL-4V. Int J Adv Manuf Technol 94(9–12):4531–4541. https://doi.org/10.1007/s00170-017-1169-1

    Article  Google Scholar 

  38. Tan Z, Pang B, Oliveira JP, Chen L, Bu X, Wang Z et al (2022) Effect of S-curve laser power for power distribution control on laser oscillating welding of 5A06 aluminum alloy. Opt Laser Technol 149:107909. https://doi.org/10.1016/j.optlastec.2022.107909

    Article  CAS  Google Scholar 

  39. Franco D, Oliveira JP, Santos TG, Miranda RM (2021) Analysis of copper sheets welded by fiber laser with beam oscillation. Opt Laser Technol 133:106563. https://doi.org/10.1016/j.optlastec.2020.106563

    Article  CAS  Google Scholar 

  40. Dehghan-Manshadi A, Reid MH, Dippenaar RJ (2010) Effect of microstructural morphology on the mechanical properties of titanium alloys. J Phys Conf Ser 240:1–5. https://doi.org/10.1088/1742-6596/240/1/012022

    Article  CAS  Google Scholar 

  41. Li H, Hsu E, Szpunar J (2008) Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets. J Mater Sci 43:7148–7156. https://doi.org/10.1007/s10853-008-3021-3

    Article  CAS  Google Scholar 

  42. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company Inc., Phillippines, pp 102, Paperback

  43. Kalsoom U, Bashir S, Ali N (2013) SEM, AFM, EDX and XRD analysis of laser ablated Ti in nonreactive and reactive ambient environments. Surf Coat Technol 235:297–302. https://doi.org/10.1016/j.surfcoat.2013.07.056

    Article  CAS  Google Scholar 

  44. Metikoš-Huković M, Kwokal A, Piljac J (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24(21):3765–3775. https://doi.org/10.1016/S0142-9612(03)00252-7

    Article  CAS  Google Scholar 

  45. Fonseca C, Barbosa MA (2001) Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corros Sci 43(3):547–559. https://doi.org/10.1016/S0010-938X(00)00107-4

    Article  CAS  Google Scholar 

  46. Yang X, Dong X, Li W, Feng W, Xu Y (2020) Effect of solution and ageing treatments on corrosion performance of laser solid formed Ti-6Al-4V alloy in a 3.5 wt. % NaCl solution. J Mater Res Technol 9(2):1559–68. https://doi.org/10.1016/j.jmrt.2019.11.082

    Article  CAS  Google Scholar 

  47. Baron A, Simka W, Chrzanowski W (2007) EIS tests of electrochemical behaviour of Ti6Al4V and Ti6Al7Nb alloys. Manuf Eng 21(1):23–26

    Google Scholar 

  48. Milošev I, Kosec T, Strehblow HH (2008) XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank’s physiological solution. Electrochim Acta 53(9):3547–3558. https://doi.org/10.1016/j.electacta.2007.12.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express appreciation for the support of the technical staff of IIT, Kharagpur in preparing the electron beam-welded Ti6Al4V samples as well as in characterisation. The partial financial support from the Board of Research in Nuclear Science (BRNS) (to JDM) and the Ministry of Human Resource Development (to JS) is gratefully acknowledged. Partial financial support from Alexander von Humboldt Foundation (Friedrich Wilhelm Bessel Award Scheme to JDM) is also gratefully acknowledged. Characterisation facility support from the Central Research facility, IIT Kharagpur is fully acknowledged.

Funding

The partial financial support from the Board of Research in Nuclear Science (BRNS) (to JDM) and the Ministry of Human Resource Development (to JS) is gratefully acknowledged. Partial financial support from Alexander von Humboldt Foundation (to JDM) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JKS. The first draft of the manuscript was written by JKS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jyotsna Dutta Majumdar.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IV - Power Beam Processes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.K., Roy, G.G. & Majumdar, J.D. Studies on the effect of process parameter on corrosion behaviour of electron beam welded Ti-based alloy (Ti6Al4V). Weld World 67, 2731–2747 (2023). https://doi.org/10.1007/s40194-023-01599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01599-z

Keywords

Navigation